TREBALL FINAL DE MÀSTER EN ENGINYERIA DE FOREST

Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu

Alumna: Anna Teixidó Compañó
Tutora: Mª Cristina Vega García
Cotutor: Jordi Jürgens Mestre

Lleida, octubre 2016
AGRAÏMENTS

Per començar vull agrair la participació i col·laboració de totes les persones que han fet possible l’elaboració d’aquest treball.

A la Diputació de Barcelona. En Jordi Jürgens, enginyer del parc, per donar-me l’oportunitat de realitzar aquest treball i per la seva ajuda i paciència durant tot el procés. En Ramon Riera i en Marc Grauet per la seva ajuda.

A la Cristina Vega, que sense ella no hauria estat possible aquests estudis.

A els guardes del Parc del Castell de Montesquiu, especialment en Josep, per la seva disposició a ajudar-me.

A l’Associació de propietaris forestals Serra de Bellmunt Collsacabra, especialment a la Mònica, per permetrem realitzar el mostreig a les seves finques.

A tots els amics que van venir ajudar-me a camp durant les seves hores lliures, sense ells el mostreig no hauria estat possible ni tampoc tant divertit.

A l’Albert i l’Ester per la seva ajuda en l’anàlisi estadístic.

I finalment vull donar les gràcies a la mare, l’Ester i en Xevi per la seva insistència i suport en tot moment, especialment en els pitjors moments.

I al resta de persones que no he mencionat i sense la seva ajuda no hauria estat possible.
ÍNDICE

1. INTRODUCCIÓ___ 1
 1.1. DESCRIPCIÓ DEL BUXUS SEMPREVIRENS L.__ 2
 1.1.1. Àrea de distribució___ 2
 1.1.2 Descripció de l’espècie__ 3
 1.1.3 Ecologia__ 4
 1.1.4 Usos__ 5
 1.1.5 El boix al Parc del Castell de Montesquiu______________________________________ 5
 1.2 DESCRIPCIÓ DE LA ZONA D’ESTUDI__ 6
 1.2.1 Situació geogràfica i extensió__ 6
 1.2.2 Situació legal i administrativa___ 7
 1.2.3 Relleu i geologia__ 8
 1.2.4 Climatologia__ 8
 1.2.5 Vegetació___ 9
 1.2.6 Gestió del Parc__ 10

2. OBJECTIUS___ 12

3. MATERIALS I MÈTODES__ 14
 3.1. FONTS CARTOGRÀFIQUES__ 15
 3.2. METODOLOGIA DEL PROJECTE__ 20
 3.3. PROGRAMARI UTILITZAT___ 21
 3.4. CARACTERITZACIÓ DE LES BOIXEDES DEL PARC DEL CASTELL DE MONTESQUIU___________ 22
 3.5. DISSENY I LOCALITZACIÓ DEL MOSTREIG PER ANALITZAR LA REBROTADA INDUÏDA DEL BOIX 23
 3.4.1. Distribució i localització dels transsectes_______________________________________ 26
 3.6. PRESA DE DADES DELS TRANSSECTES__ 27
 3.6.1. Variables mesurades en cada transsecte__ 28
 3.6.2. Anàlisi i mesura de la rebrotada del boix__ 29
 3.7. TRACTAMENT I ANÀLISI DE LES DADES___ 31
 3.7.1. Obtenció de les variables biofísiques de l’arbrat a partir de cartografia
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.Índex

3.7.2. Variables utilitzades en l’anàlisi de la rebrotada induïda del boix 33

3.8. ANÀLISI ESTADÍSTIC 36

3.8.1. Anàlisi estadístic de les formacions de boix del Parc del Castell de Montesquiu 36

3.8.2. Anàlisi estadístic del rebrot del boix 36

4. RESULTATS 38

4.1. CARACTERITZACIÓ DE LES FORMACIONS DE BOIX DEL PARC DEL CASTELL DE MONTESQUIU 39

4.1.1. Anàlisi de les unitats tractades 41

4.1.1.1. Variables qualitatives. Anàlisi de variància 41

4.1.1.2. Relació entre el recobriment arbustiu i les variables biofísiques de l’arbrat 43

4.1.2. Anàlisi de les unitats no tractades 44

4.1.2.1. Variables qualitatives. Anàlisi de variància 44

4.1.2.2. Relació entre el recobriment arbustiu i les variables biofísiques de l’arbrat 48

4.1.3. Anàlisi de les unitats a partir de les dades del PTGMF 2000 49

4.1.3.1. Variables qualitatives. Anàlisi de variància 49

4.1.3.2. Relació entre el recobriment arbustiu i les variables biofísiques de l’arbrat 51

4.2. RESULTATS DE L’ANÀLISI ESTADÍSTIC DEL REBROT DEL BOIX 52

4.2.1 Anàlisi de components principals 52

4.2.2. Regressió lineal múltiple multinivell 55

5. DISCUSSIÓ 57

5.1. CARACTERITZACIÓ DE LES BOIXEDES DEL PARC 58

5.2. ESTUDI DE LA REBROTADA INDUÏDA DEL BOIX 59

6. CONCLUSIONS 62

7. BIBLIOGRAFIA 64
ÍNDEX DE LES TAULES

3. MATERIALS I MÈTODES
Taüla 3.1. Ubicació dels transsectes mostrejats

Taüla 3.2. Composició específica

Taüla 3.3. Distribució espacial de la massa

Taüla 3.4. Variables continues

Taüla 3.5. Classes d’orientació classificades segons Altun et al. (2008)

Taüla 3.6. Classificació de la composició específica

Taüla 3.7. Classificació de la distribució espacial de la massa

4. RESULTATS
Taüla 4.1. Anàlisi de variància del Fcc arbustiu (%) en funció del tipus de vegetació arbòria

Taüla 4.2. Valor promig del Fcc arbustiu (%) en funció dels tipus de vegetació

Taüla 4.3. Anàlisi de variància del Fcc arbustiu (%) en funció de l’orientació

Taüla 4.4. Valors promig del Fcc arbustiu (%) en funció de l’orientació

Taüla 4.5. Relacions entre els factors biofísics i el Fcc arbustiu

Taüla 4.6. Anàlisi de variància del Fcc arbustiu (%) en funció del tipus de vegetació arbòria

Taüla 4.7. Valors promig del Fcc arbustiu (%) en funció dels tipus de vegetació

Taüla 4.8. Anàlisi de variància del Fcc arbustiu (%) en funció de l’orientació

Taüla 4.9. Valors promig del Fcc arbustiu (%) en funció de l’orientació

Taüla 4.10. Relacions entre els factors biofísics i el Fcc arbustiu

Taüla 4.11. Anàlisi de variància de Fcc (%) en funció del tipus de vegetació arbòria

Taüla 4.12. Valor promig de Fcc boix (%) en funció del tipus de vegetació

Taüla 4.13. Anàlisi de variància del Fcc boix (%) en funció de l’orientació

Taüla 4.14. Valors promig del Fcc boix (%) en funció de l’orientació

Taüla 4.15. Relacions entre els factors biofísics i el Fcc boix

Taüla 4.16. Valor propi dels components principal i variància explicada

Taüla 4.17. Càrregues factorials de cada component principal amb cada variable depenent

Taüla 4.18. Correlacions

Taüla 4.19. Influència de les variables sobre l’índex PC1
ÍNDICE DE LES FIGURES

1. INTRODUCCIÓ

(http://www.gencat.cat/mediamb/habitats/documents/32aa.pdf)______________________ 2
Figura 1.2. Imatge del Buxus sempervirens. Font: http://floracatalana.net________ 3
Figura 1.3. Localització del Parc del Castell de Montesquiu. Font: www.diba.cat_ 6
Figura 1.4. Diagrama ombrotèrmic. Estació del Castell de Montesquiu. (Font: Diputació de Barcelona)_______________________________ 9

3. MATERIALS I MÈTODES

Figura 3.1. Mapa de situació i límits de la zona cartografiada del Parc del Castell de Montesquiu. Font: Cartografia dels hàbitats CORINE i dels HIC del Parc del Castell de Montesquiu i zones adjacents_______________________________ 20
Figura 3.2. Fotografies de una unitat tractada i una no tractada______________ 21
Figura 3.3. Els quatre models de tractament estudiats____________________ 25
Figura 3.4. Distribució dels transsectes___________________________________ 26
Figura 3.5. Senyalització del transsecte per iniciar el mostreig______________ 28
Figura 3.6. Mesurament del rebrot del boix_____________________________ 31
Figura 3.7. Estructura de les dades______________________________________ 37

4. RESULTATS

Figura 4.1. Mapa del recobriment arbustiu (%)_____________________________ 39
Figura 4.2. Mapa dels tipus de vegetació___________________________________ 40
Figura 4.3. Recobriment arbustiu (%) de les unitats d’actuació tractades______ 42
Figura 4.4. Recobriment arbustiu (%) de les unitats d’actuació no tractades____ 45
Figura 4.5. Recobriment arbustiu (%) de les unitats d’actuació no tractades____ 47
Figura 4.6. Recobriment arbustiu (%) en funció a) l’àrea basal (m²/ha) i b) de la biomassa foliar (t/ha) de cada unitat__________________________ 48
Figura 4.7. Representació dels valors de Fcc arbori de cada unitat d’actuació____ 51
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (Buxus sempervirens) al Parc del Castell de Montesquiu.

1. INTRODUCCIÓ
1. INTRODUCCIÓ

1.1 DESCRIPCIÓ DEL BUXUS SEMPRERVIRENS L.

1.1.1. Àrea de distribució

El boix (Buxus sempervirens L) es distribueix àmpliament per Europa i l’oest d’Àsia. És originari del centre i sud d’Europa, nord d’Àfrica i sud-oest d’Àsia. Creix de forma silvestre en el sotabosc i marges de boscos, preferentment sobre substrat calcari, eliminant el bosc, de vegades forma extensos matollars o boixedes.

A Catalunya, l’espècie té una àrea de dispersió molt àmplia per tot el Principat, des de pocs metres d’altitud fins als 1.800 m (a les valls més continentals dels Pirineus), però defuig dels terrenys silicis. Se’n troba encara al País Valencià fins a l’Alt Maestrat. A les Illes Balears el substitueix el boix baleàric, de fesomia similar.

Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Introducció

1.1.2. Descripció de l’espècie

Arbre perennifoli de la família de les Buxàcies que no arriba gairebé mai a desenvolupar-se del tot i resta com un arbust molt fullós de branques oposades. Quan creix més, forma una capçada densa i estreta de branques erectes. De creixement lent, no acostuma a superar els 5 m d’alçada.

Les fulles són simples, petites, enteres, ovades o el-líptiques, oposades, curtament peciolades, endurides, lluents i d’un verd fosc a l’anvers, pàl·lides i d’un verd groguenc al revers, una mica recargolades al marge i escotades a la punta. Els brots tendres són peluts.

Les flors femenines i masculines estan separades, però en un mateix peu; formen glomèruls compactes a l’axil·la de les fulles superiors, on hi ha diverses flors masculines que envolten una femenina central; són d’un color groc verdós. L’època de floració és de gener a maig.

El fruit en càpsula, de mida d’un cigró, amb tres banyetes que provenen dels estils florals i amb 6 llavors; les granes són negres i lluents. La fructificació es produeix de maig a juny.

Figura 1.2. Buxus sempervirens. Font: http://floracatalana.net
1.1.3. Ecologia

El boix és una espècie molt resistent a les condicions hídriques, lumíniques i de temperatura. Es desenvolupa sense problema sota les condicions d’ombria pròpies del sotabosc i dels enclavaments rocosos resguardats. Per altre banda, aguanta molt bé les condicions d’alta irradiació lumínica que rep en els clars de bosc. (Tena, D., 2009). Prefereix mitja ombra, tot i que tolera el sol si es troba amb humitat suficient.

En quan a la temperatura ambiental, si bé el boix es típicament termòfil també es capaç de suportar grans oscil·lacions tèrmiques. Aquesta característica es reflecteix en la distribució de les boixedes, presents en enclavaments de gran duresa ambiental, acompanyant taxons típics de altituds superiors i tolerants a baixes temperatures com el pi negre, l’avet o el pi roig. (Tena, D., 2009). Requereix d’un hivern fresc, resisteix bé les gelades, el vent i la sequera.

Pel què fa a les condicions hídriques, el boix és molt tolerant a la sequera, desenvolupant-se sobre tot en enclavaments edafoxèrics o semiàrids típicament mediterranis o submediterranis. No obstant, pot estar present en llocs amb precipitacions més abundants o regulars però en aquests casos sempre es desenvolupa sobre sòls ben drenats i rocosos que indueixen llargs períodes d’estrès hídric tot i la disponibilitat hídrica. (Tena, D., 2009).

El pH edàfic és determinant per la presencia de boix, apareixenent casi exclusivament sobre substrat bàsic (calcàris), el que explica la seva absència en la totalitat de la meitat occidental de la Península. Per últim, s’associa sempre a sòls molt poc madurs, descarnats i de horitzons pobres amb escassa matèria orgànica edàfica disponible. (Tena, D., 2009).

Viu en matollars densos on sol ser la planta dominant i també als boscos submediterranis i mediterranis humits. Preferentment a les rouredes de l’estatge montà, en indrets frescos sobre terreny calcari. A les rouredes més alterades i reduïdes per l’acció humana, forma boixedes, on conviu sobretot amb els aurons, el ginebre, l’avellaner i les moixeres.
Introducció

1.1.4. Usos

El boix ha estat molt aprofitat sobretot per la seva fusta, que és de color groc llimona, molt dura i de molt alta densitat, i admet un gran poliment. S’utilitza en torneria, escultura i artesanía (objectes culinaris, fitxes d’escacs, gravats, instruments musicals de vent, etc.). En jardineria és utilitzat per fer tanques i per esculpir figures vegetals en parcs, jardins i claustres, va ser molt usat en la jardineria francesa del segle XVIII. Antigament havia tingut diverses aplicacions remeieres, tot i que el boix és una planta tòxica (rebutjada pel bestiar). La seves fulles i tiges contenen alcaloides verinosos que si s’ingereixen poden provocar dolor d’estomac, vòmits, diarrea, convulsions i fins i tot la mort.

1.1.5. El boix al Parc del Castell de Montesquiu

Dins del Parc, el boix, forma part del sotabosc sent present pràcticament en totes les tipologies de bosc (pinedes de pi roig, rouredes, boscos mixtes). Aquest sotabosc es caracteritza per la seva elevada densitat, causa directa de la baixa densitat de pins i roures, fent que el bosc sigui quasi impenetrable. El boix conforma bàsicament el sotabosc a les obagues, metre que a les solanes hi predominen els esbarzers (*Rubus ulmifolius*).

L’elevada densitat de boix provoca varis problemes en el parc. En rodals amb poca insolació (obagues) la gran competència de sotabosc de boix dificulta la regeneració de les espècies arbòries principals. A més en diverses zones la gran densitat d’aquest sotabosc fa necessari realitzar estassades per tal de facilitar els treballs silvícoles, disminuint els guanys econòmics de la venda de fusta, inclús en alguns casos l’elevat cost d’aquest tractament provoca un balanç econòmic negatiu. Per últim, l’alt recobriment de boix és el principal causant de que el 68% de la superfície de bosc del Parc té baixa aptitud per al pasturatge, segons el Pla d’Ordenació i Gestió de l’Aprofitament Silvopastoral de la finca, redactat l’any 2008 per part del Centre Tecnològic Forestal de Catalunya.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix \((Buxus sempervirens)\) al Parc del Castell de Montesquiu.

Introducció

Finalment dir que en les Fagedes \((Fagus sylvatica)\) i en les plantacions fustaneres de Platanar \((Platanus hybrida)\) i l’avetosa d’avet roig, \((Picea abies)\) la presència de boix és anecdòtica o nula. Totes aquestes formacions tenen una extensió molt reduïda a la finca.

1.2 DESCRIPCIÓ DE LA ZONA D’ESTUDI

1.2.1 Situació geogràfica i extensió

El Parc del Castell de Montesquiu es troba situat a l’extrem nord de la comarca d’Osona (província de Barcelona). La major part de la seva extensió pertany al municipi de Montesquiu, la resta ocupa sòls dels municipis de Sora, Sta. Maria de Besora i St. Quirze de Besora. Aquests municipis, juntament amb Vidrà, conformen la subcomarca del Bisaura. La superfície total del parc és de 583,50 ha distribuïdes en:

- Superficie forestal: 568,46 ha
 - Superficie poblada amb espècies arbòries: 485,01 ha.
 - Superficie poblada amb espècies no arbòries: 83,45 ha.
- Superficie no forestal (conreus, edificis, etc.): 15,04 ha.

Figura 1.3. Localització del Parc del Castell de Montesquiu. Font: www.diba.cat
1.2.2 Situació legal i administrativa

El Parc del Castell de Montesquiu és de titularitat pública, propietat de la Diputació de Barcelona des de l’any 1936, tot i que la cessió no es va fer efectiva fins el 1972.

El Parc engloba les finques de Casa Nova del Castell, la Solana, les Planes, Sant Moí i les Codines, està gestionat a través de la Gerència de Serveis d’Espais Naturals, adscrit a l’Àrea d’Espais Naturals, en col·laboració amb els ajuntaments que formen part del Consell Coordinador.

El Consell Coordinador, constituït el 28 de maig de 1986, està format per dos representants de la Diputació de Barcelona (presidència i vicepresidència); dos representants de la Generalitat de Catalunya (amb competències sectorials vinculades amb el desenvolupament del pla especial); així com els alcaldes, o els seus representants, dels municipis del parc.

Com a eines de planificació, el Parc compta:

- **Pla Especial de Protecció del Medi Físic** del Parc del Castell de Montesquiu, aprovat el juliol del 1986 i modificat el 2 d’abril de 1998 (D.O.G 02.07.98 núm.2672).
- **Pla d’Espais d’Interès Natural (PEIN)** de la Generalitat de Catalunya, aprovat pel Decret 328/92 de 14 de setembre (D.O.G 1.03.93 núm. 1714).
- **Pla Tècnic de Gestió i Millora Forestal**, aprovat el maig del 2000 per la Generalitat de Catalunya.
- **1º revisió del Pla Tècnic de Gestió i Millora Forestal**, el 26 d’abril de 2013 i aprovat per la Generalitat de Catalunya el 2014.
1.2.3 Rellue i geologia

El Parc, es troba situat a cavall de les comarques d’Osona i Ripollès, a la zona anomenada com a Subpirineu, la qual es diferencia del Prepirineu per les seves elevacions més baixes i terreny més suau.

L’altitud de la finca oscil·la entre els 570 m i 850 m, el relleu ha estat modelat per nombrosos torrents i rieres que tributen el riu Ter, el qual divideix el Parc en dues parts desiguals. Una zona més gran, a l’est, ocupada per les conques de les rieres de Vallfogona, la de les Dous i la de la Solana, amb vessants d’elevada pendent i majoritàriament d’orientació oest. L’altra zona, a l’oest, més petita i amb un relleu més suau, es troba la conca de la riera de Sora.

Els materials que conformen la roca mare d’aquesta zona són margues i gresos, amb presència d’alguns estrats calcaris interposats. En quant a l’estat erosiu, no s’observen fenòmens evidents. (Jürgens, 2000).

1.2.4 Climatologia

Segons la classificació d’Allué (1990), el clima és centreuropeu o atlàntic d’hiverns freds, i equival al clima temperat fred marítim o mediterrani d’alta muntanya (submediterrani) de Miller.

Les dades meteorològiques es prenen de forma diària a l’estació automàtica del Castell de Montesquiu, situada a 672 m. La zona es caracteritza per tenir els hiverns freds i estius moderats, les temperatures mitges anuals oscil·len entre els 9 i 11 ºC. La pluviometria anual es situa sobre els 747 mm, però amb variabilitat d’un any a l’altre. Cal destacar l’absència d’un període àrid, ja que els mesos de maig a setembre són força plujosos. A més a l’estiu solen predominar els vents de llevant, amb la qual cosa es manté una humitat ambiental suficient que permet la seva condensació durant la nit.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Introducció

Figura 1.4. Diagrama ombrotèrmic. Estació del Castell de Montesquiu. Font: Diputació de Barcelona.

1.2.5 Vegetació

La vegetació és la característica de l’estatge montà de la Catalunya submediterrània. Per les condicions climàtiques (pluviometria anual>600mm) abans descrites, la finca es troba en domini del roure martinenc (*Quercus humilis*). Encara que aquest ha estat substituït pel pi roig (*Pinus sylvestris*), degut a la gestió que s’hi ve donant, essent l’espècie més abundant de la finca.

El sotabosc és similar tant si domina el roure com si ho fa el pi. La baixa densitat de l’estrat arbori en moltes zones, ha permès la proliferació d’esbarzers (*Robus sp.*) i de boix (*Buxus sempervirens*) que en molts casos dominen el sotabosc i el fan quasi impenetrable.

En les rouredes on la humitat no és excessiva apareixen com espècies acompanyants diverses aceràcies com l’auró blanc (*Acer campestre*), l’auró negre (*Acer monspessulanum*) i la blada (*Acer opalus*) i de rosàcies com la pomera (*Pyrus malus*), la moixera de pastor (*Sorbus torminalis*), la moixera (*Sorbus aria*) i el server (*Sorbus domestia*). Quan les condicions d’humitat del sòl són una mica més elevades, hi
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

1.2.6 Gestió del Parc

Els boscos del Parc han estat varies dècades sense aprofitaments, constituïts principalment per espècies intolerants (pi roig) o poc tolerants (roure martinenc), han adoptat en la major part dels casos una estructura regular. En moltes zones la densitat és insuficient, la qual cosa ha permès un desenvolupament important del sotabosc.

El pi roig, que en condicions normals tindria el caràcter d’acompanyant a la finca, ha estat afavorit de manera voluntària. El major valor econòmic de la fusta de pi i l’aprofitament del roure per a llenya en el passat expliquen que actualment el pi roig domini en alguns indrets. (Jürgens, 2000).

La gestió del pi roig, com que és una espècie intolerant a la falta de llum i s’ha volgut afavorir davant del roure, obliga a aclarir fortament la massa. Si no es fa correctament o la regeneració sofreix algun dany, el sotabosc o l’estrat herbaci, que en apareixen també el tell de fulla petita (*Tila cordata*), l’om (*Ulmus minor*) i puntualment el carpí (*Carpinus betulus*).

En condicions més fresques, en general en clots i prop de les rieres, el roure martinenc forma boscos mixtes acompanyat de tell de fulla gran (*Tila platyphllos*), el freixe de fulla gran (*Fraxinus excelsior*) i el bedoll (*Betula pendula*).

El pi roig apareix principalment a les obagues, forma boscos mixtes amb el roure martinenc o amb el faig o formant rodals com a espècie principal.

La fageda apareix a les obagues més fresques i sol acompanyar-lo el tell de fulla petita, el roure de fulla gran (*Quercus petraea*), la moixera de pastor, la moixera, la blada i l’auró blanc i en algun cas l’auró negre.

Finalment cal esmentar la presència de dues espècies protegides a Catalunya (Ordre del 5 de novembre de 1984) el grèvol (*Ilex aquifolium*) i el teix (*Taxus baccata*).
aquestes condicions de clima, sòl i d’increment de llum reacciona amb molt vigor, pot acabar per formar un estrat inferior molt dents i ofegar els pins que hagin pogut regenerar. A més, l’aprofitament del roure per a llenya (tractament de bosc de rebrot) afavoreix també el pi, ja que el roure martinenc perd d’aquesta manera ràpidament el seu vigor. El tractament de bosc de rebrot també produeix un empobriment lent de la roureda en espècies acompanyants caducifòlies, totes elles encara més sensibles (aurons, moixeres, etc.) (Jürgens, 2013).

Actualment, la gestió del bosc es realitza sota les directius del PTGMF, d’acord amb el que estableix el Pla Especial, que és garantir la sostenibilitat de l’ús múltiple del bosc. Així doncs el PTGMF ha de ser un instrument de gestió per compatibilitzar la protecció i la salvaguarda dels sistemes naturals més rellevants des del punt de vista ecològic i paisatgístic amb el desenvolupament econòmic basat en l’aprofitament racional dels recursos i la millora de les condicions de vida de la població rural.

Durant el primer decenni de vigència del PTGMF s’han realitzat claretes de plançoneda, així com claretes selectives a l’edat de perxada i fustal. Aquets tractaments permeten regular la competència intraespecífica i afavorir els millors peus. Pel que fa al tipus de tallada de regeneració, com es recomana, s’ha aplicat l’aclarida successiva per bosquets, donada la presència d’espècies amb diferent grau de tolerància. En algunes zones han estat convenient les estassades, donada la gran densitat de sotaboscs, per facilitar els treballs silvícoles. En general es redueix el sotabosc de manera puntual al voltant dels arbres a tallar, i quan es realitzen tallades de regeneració s’esbrossa arreu.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

2. OBJECTIUS
2. OBJECTIUS

El present treball pretén:

1) Caracteritzar les formacions de Boix (*Buxus sempervirens*) del Parc del Castell de Montesquiu, a partir de les dades de l’inventari forestal del PTGMF, mitjançant tecnologia GIS, per conèixer la seva distribució i decidir la gestió espai-temps dels seus tractaments.

2) Estudiar l’efecte de l’estassada sobre les masses de boix (*Buxus sempervirens*), quantificant els nous rebrots i la seva evolució en el temps. Per avaluar l’eficàcia dels tractaments silvícoles s’estudiarà l’efecte d’una sèrie de variables dendromètriques, dasomètriques i fisiogràfiques sobre la rebrotada induïda.
Caracterització de les boixes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

3. MATERIALS I MÈTODES
3. MATERIALS I MÈTODES

3.1. FONTS CARTOGRÀFIQUES

Les fonts cartogràfiques emprades en l’estudi per caracteritzar les masses forestals i planificar el mostreig procedeixen majoritàriament de l’Institut Cartogràfic i Geològic de Catalunya (ICGC). Aquest organisme ofereix un gran ventall d’escales en format digital mitjançant una aplicació de la seva pàgina d’Internet (www.icgc.cat). L’aplicació permet visualitzar la geoinformació, descarregar-la en diversos formats i escales o obtenir-la a partir del geoservei.

Els geoserveis (geoinformació en línia) són serveis de distribució d’informació geogràfica per Internet, en què l’usuari es connecta al servidor del distribuïdor mitjançant una col·lecció de protocols estàndards definits per l’Open Geospatial Consortium (OGC) i visualitza en el seu entorn de treball la cartografia o les imatges amb les coordenades corresponents. Els geoserveis que s’ofereixen poden ser de dues tipologies: serveis WPS o serveis WMS.

Actualment hi ha un gran nombre d’organismes que posen en xarxa la cartografia que produeixen. En el nostre cas, hem emprat el geoserveis de l’ICGC. Aquets geoserveis tenen com avantatges la possibilitat de disposar de la darrera versió de cartografia, ja que la connexió es fa directament amb el distribuïdor en temps real; i l’estalvi d’espai d’emmagatzematge en el disc dur de l’ordinador personal.

El sistema cartogràfic de representació de totes les bases cartogràfiques s’ha utilitzat la projecció universal transversal del Mercator (UTM), amb les coordenades referides al fus 31. El sistema de referència geodèsic és el sistema oficial anomenat ETRS89, establert com a reglamentari pel Decret 1071/2007.
A continuació, s’especifica les bases cartogràfiques treballades en el transcurs de l’estudi.
- Mapa topogràfic de Catalunya 1:5.000.
- Base topogràfica de Catalunya 1:5000.
- Ortofoto de Catalunya 1:5.000 i 1:2.500.
- Model d’Elevacions del Terreny de Catalunya 5x5 i 2x2 metres.
- Mapes de variables biofísiques de l’arbrat de Catalunya.
- L’NDVI 2015 (Normalized Differences Vegetation Index) 1:5.000.
- Mapa d’hàbitats CORINE del Parc del Castell de Montesquiu.

Mapa topogràfic

Un mapa topogràfic és una representació gràfica a escala d’una àrea determinada de la superfície terrestre mitjançant corbes de nivell per representar les variacions del relleu. A més de l’orografia conté informació sobre la hidrografia, poblament, comunicacions, usos del sòl, límits administratius, etc. Aquesta representació és fruit d’un procés d’interpretació de tots els elements territorials i de l’aplicació d’un llenguatge d’expressió gràfica.

Aquesta base cartogràfica s’ha emprat per visualitzar i preparar el treball a camp.

La base topogràfica 1:5.000 vectorial

La representació dels fenòmens topogràfics del món real en la base es fa a través d’objectes als quals se’ls associa una representació geomètrica: punt, línia o polígon. Atès que el model de dades és tridimensional, cada vèrtex és representat per 3 coordenades (X,Y,Z).

D’aquesta base topogràfica les principals capes que s’han utilitzat de manera més exhaustiva han estat:
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

- Altimetria: Corbes de nivell senzilles o intercalades (línies)

 Corbes de nivell mestres (línies)

 Corbes de nivell mestres (textos)

- Vies de comunicació: eixos de vials i corriols (línies)

Les Ortofotos 1:5.000 i 1:2.500

L’ortofoto és un document cartogràfic basat en una imatge aèria vertical que ha estat rectificada per tal que mantingui una escala uniforme en tota la seva superfície. En tractar-se d’un document cartogràfic amb imatges aèries coma base, significa que no hi ha cap tipus d’interpretació que en faciliti la lectura o identificació dels objectes.

La finalitat d’aquests imatges ha estat visualitzar el territori d’estudi i superposar-hi la cartografia vectorial, per tal estudiar en detall la massa.

Model d’Elevacions del Terreny de Catalunya (MET)

El MET-5 és un model de malla regular que conté altituds ortomètriques distribuïdes segons una quadrícula de 5 m de costat.

La font de dades MET-5 és la informació altimètrica continguda en la Base topogràfica de Catalunya a escala 1:5.000 versió 2, que inclou perfils, cotes altimètriques, línies de trencament del pendent i corbes de nivell, tots ells recollits sobre el terreny. A partir d’aquesta informació i mitjançant processos de triangulació, és generat un model de triangles del terreny a partir del qual s’obté el model de malla regular per interpolació.

El MET-2 és un model digital del terreny de malla regular que conté altituds ortomètriques, expressades en metres i amb 2 decimals, distribuïdes segons una quadrícula amb un pas de malla de 2 metres obtingut amb tecnologia LiDAR.

LiDAR és un sensor altímetre làser aerotransportat que permet generar models del terreny densos i d’alta precisió altimètrica. El sistema proporciona un núvol de punts
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu. Materials i mètodes

continu sobre el territori. El projecte LiDARCAT cobreix de dades LiDAR tota la superfície de Catalunya amb una densitat mínima de 0,5 punts/m².

A partir del model digital del terreny s’ha generat el mapa d’orientacions.

Mapes de variables biofísiques de l’arbrat de Catalunya

L’ICGC, juntament amb el CREA i amb col·laboració del DARP, ha elaborat els primers mapes d’alta resolució dels boscos catalans, obtenint una resolució 2.500 vegades més gran que la dels inventaris forestals tradicionals. S’han elaborat 8 mapes que representen variables biofísiques de l’arbrat: alçada mitjana, fracció de cabuda coberta, diàmetre normal mitjà, àrea basal, volum amb escorça, biomassa foliar, biomassa aèria total i carboni aeri total.

Els mapes es representen en format ràster amb una resolució de 20 m i s’han realitzat a partir de les dades LiDAR de cobertura de Catalunya (LiDARCAT) utilitzant la informació de les característiques estructurals de les masses forestals que aquestes dades proporcionen. Aquestes dades han estat recollides per diferents vols que va realitzat l’ICGC amb el sensor LiDAR, entre els anys 2008 i 2011, i que recobreixen Catalunya.

Els models estadístics que han permès obtenir els mapes per cada variable s’han obtingut a partir de la informació estructural extreta de les dades LiDAR i les dades derivades de les parcel·les d’inventari forestal. Aquets models s’han aplicat únicament a les cobertes arbrades, que estan determinades pel Mapa de Cobertes del Sòl (MCSC) del 2009. Els mapes s’ofereixen com a servei WMS i són descarregables del web de l’ICGC.

S’han estimat les variables biofísiques a l’estat en que es trobaven l’any 2005. No s’ha pogut actualitzar a una data més propera degut a la falta de mostrejos de camp més actuals.

NDVI 1:5.000
El Normalized Difference Vegetation Index (NDVI) serveix bàsicament per mesurar el creixement de les plantes, determinar cobertes vegetals i controlar la producció de biomassa.

A partir de la informació que obtenen les càmeres digitals aerotransportades de l'ICGC de quatre regions de l’espectre electromagnètic, concretament del vermell, del verd, del blau, i de l'infraroig proper (aquest últim no visible per l'ull humà). L'NDVI es calcula a partir de la informació obtinguda del vermell i de l'infraroig proper, amb la següent fórmula: \(\text{NDVI} = \frac{(\text{infraroig proper} - \text{vermell})}{(\text{infraroig proper} + \text{vermell})} \)

Quan un arbre és vigorós, reflecteix molta radiació solar en l'infraroig proper i poca en el vermell i, en conseqüència, s’obté un NDVI elevat. En canvi, quan un arbre està malalt, passa el contrari.

Per tant, tenint en comte que el NDVI sempre resulta en un número entre -1 i 1, per raó de la forma en què es calcula, es podría dir que un NDVI<0 es correspon amb cobertes artificials o zones d'aigua, un NDVI entre 0 i 0,3 es correspon amb sòls nu i un NDVI elevat es correspon amb zones de vegetació.

Aquesta base cartogràfica s’ha emprat en la preparació del inventari a camp.

Mapa d’habitats CORINE del Parc del Castell de Montesquiu 1:10.000

El mapa d’habitats CORINE del Parc del Castell de Montesquiu s’ha extret del treball dut a terme per investigadors del Grup de Recerca de Biodiversitat, Ecològica, Tecnològica i Gestió ambiental (BETA) de la Universitat de Vic i coordinat pel Grup de Geobotànica i Cartografia de la Vegetació de la Universitat de Barcelona.

La superfície cartogràfiada inclou la totalitat del Parc del Castell de Montesquiu (682,16 ha), al qual s’hi ha incorporat una part de la seva àrea d’influència,
majoritàriament cap el seu costat est, amb l’objectiu de facilitar la gestió del conjunt del territori. La superfície cartografiada total és de 1285,90 ha.

L’aixecament es va fer utilitzant els ortofotomapes del ICGC (infraroig i color) a escala 1:5.000 i validant sobre el terreny els resultats obtinguts. El treball de camp es va portar a terme a la primavera i estiu de l’any 2014. La llegenda està constituïda per unitats CORINE enunciades i explicades al Manual dels hàbitats de Catalunya.

![Figura 3.1. Mapa de situació de la zona, límits espai cartografiat (línia groga) i límits del Parc del Castell de Montesquiu (línia vermella). Font: Cartografia dels hàbitats CORINE i dels HIC del Parc del Castell de Montesquiu i zones adjacents.](image)

3.2. METODOLOGIA DEL PROJECTE

Davant la necessitat que té el Parc Natural del Castell de Montesquiu d’una gestió específica del boix, per poder caracteritzar les Boixedes i poder decidir la gestió espai-temps dels seus tractaments més adequada, s’ha decidit dividir el treball en dos grans blocs.

Primerament és necessari descriure les formacions de boix del Parc, per conèixer la seva extensió i identificar les zones on presenta una alta densitat produint un problema de penetrabilitat al bosc. Per tenir la informació necessària sobre les
estructures de sotabosc, la seva situació actual i la seva possible evolució en el temps, a fi i efecte de poder prendre les decisions necessàries sobre la seva planificació i gestió, s’ha utilitzat les dades proporcionades pel Parc de l’inventari forestal del PTGMF, amb el suport de les fonts cartogràfiques disponibles del ICGC.

La segona part del treball consisteix en analitzar l’efecte dels tractaments silvícoles sobre el boix, aplicats en diferents zones del Parc Natural de Montesquiu, on presentava una elevada densitat. Per avaluar l’eficàcia dels tractaments silvícoles s’ha mesurat el seu efecte sobre la rebrotada induïda (el conjunt de rebrots apareguts després del tractament). Per estudiar la rebrotada induïda es van comptabilitzar els rebrots que han aparegut al voltant de cada individu, i la seva relació en el número de tanys de l’individu abans del tractament i el diàmetre dominant de l’individu tallat. A més s’analitzarà la resposta del boix als diferents tractaments estratificant per zones i qualitat de l’estació.

![Imatge](image1.png)

Figura 3.2. Fotografia a) unitat tractada b) unitat no tractada.

3.3. PROGRAMARI UTILITZAT

El programari de SIG utilitzat ha estat ArcGIS 10.3 de ESRI, que és un sistema d’informació geogràfica (SIG) per treballar amb mapes i informació geogràfica.
S’utilitza en la creació i l’ús de mapes; compilació de dades geogràfiques; analitzar i assignar la informació i la gestió de la informació geogràfica en una base de dades. ArcGIS es compon de tres aplicacions que estan incloses en ArcInfo, ArcEditor i ArcView, les quals son ArcMap, ArcCatalog i ArcToolbox (Orduña, 2007).

Per digitalitzar la informació del PTGMF i de les dades mesurades a camp s’ha utilitzat el programa Microsoft Office Excel 2011. Per l’anàlisi estadístic s’ha utilitzat el paquet estadístic STATA/SE versió 14.0 i el programa Microsoft Office Excel 2011.

3.4. CARACTERITZACIÓ DE LES BOIXEDES DEL PARC DEL CASTELL DE MONTESQUIU

La informació per identificar les zones on el boix presenta una elevada densitat provocant problemes de penetrabilitat al bosc, s’ha extret de les fitxes descriptives de cada una de les unitats d’actuació del PTGMF (1ª revisió).

Aquestes fitxes descriptives són el resultat de l’inventari forestal que es va dur a terme per la redacció del Pla Tècnic de Gestió, per tal de conèixer amb més exactitud la situació actual de les masses arbòries que poblen la finca i poder dur a terme una planificació i una valoració econòmica dels aprofitaments més acurada en cadascuna de les unitats on es preveu actuar.

Les variables d’interès per descriure les formacions de boix el Parc són:

- Recobriment de l’estrat arbustiu.
- Espècies principals estrat arbustiu.
- Tipus de vegetació arbòria: espècies principals.
- Si el sotabosc ha estat tractat anteriorment abans de la revisió del PTGMF i l’any que es va tractar.

Encara que no es disposi del recobriment de boix de cadascuna de les unitats, el ser l’espècie arbustiva dominant es considera que una unitat d’actuació amb un elevat
recobriment arbustiu, té una elevada densitat de boix. A més la informació de les espècies principals que formen aquest estrat arbustiu i la descripció de les actuacions planificades en cada unitat ho corroboren.

Aquesta informació s’ha digitalitzat amb el suport de GIS Arcmap10.3. La digitalització permet identificar de manera visual la localització les zones del parc que presenten una altra densitat de boix, conèixer la seva extensió i poder prendre decisions sobre la seva planificació i gestió.

A més s’ha obtingut el mapa d’orientació a partir del Model digital d’Elevacions del Terreny 5x5 metres del ICGC mitjançant les eines d’anàlisi de superfície de l’Arcmap Spatial Analysis/Surface Analysis/Aspec, el mapa resultant s’adjunta a l’annex.

Finalment s’ha realitzat un anàlisis gràfic i estadístic mitjançant el programa Microsoft Office Excel 2011.

3.5. DISSENY I LOCALITZACIÓ DEL MOSTREIG PER ANALITZAR LA REBROTADA INDUÏDA DEL BOIX

La localització de les unitats d’estudi s’ha decidit a partir de les unitats d’actuació delimitades en el PTGMF, els factors considerats per l’elecció de les zones d’estudi han estat: l’any de l’estassada, l’exposició i l’homogeneïtat, estructura i composició de la vegetació arbòria. Amb el suport de les capa SIG corresponent a les unitats d’actuació del PTGMF, el mapa d’hàbitats del Parc del Castell de Montesquiu (disponible a la web ub.edu), la base topogràfica 1:5.000, l’ortofotomapa a escala 1:5.000 i els mapes de variables biofísiques de l’arbrat de Catalunya de 20 m de resolució, tots disponibles a la web de l’Institut Cartogràfic i Geològic de Catalunya, s’han digitalitzat les localitzacions amb el suport del ArcGIS.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

A més s’ha inclòs en l’estudi una finca contigua el Parc de propietat privada, gestionada per l’Associació de Propietaris Forestals Serra de Bellmunt-Collsacabra. Atès que una àrea d’aquesta complia amb les característiques cercades per realitzar el mostreig i l’Associació va mostra interès en l’estudi degut a que també tenen el problema de gestió del boix.

Per evitar les distorsions pel factor temps en l’anàlisi de la resposta del boix a l’estassada, s’han seleccionat per inventariar les unitats d’actuació que es van estassar durant el mateix període (tardor-hivern 2014 a 2015).

Pel que fa a l’exposició s’han seleccionat tres ubicacions amb diferent grau d’insolació: solana, obaga i fons de vall.

En quan a la composició de la vegetació arbòria, s’han seleccionat les unitats que presenten el pi roig com espècie principal o formant masses mixtes amb el roure martinenc. Alhora de situar els transsectes dins de cada unitat d’estudi s’ha analitzat de manera més acurada els aspectes de homogeneïtat i estructura de la vegetació arbòria mitjançant els mapes de variables biofísiques de l’arbrat (ICGC).

Els individus de boix presenten una gran variabilitat en referència el nº de peus que formen una soca, per tal d’obtenir una mostra suficientment gran que fos estadísticament significativa s’han seleccionat els quatre patrons de boix més comuns que s’han tractat. Els tractaments silvícoles estudis, es diferencien en funció del grau d’estassada aplicada a la mata de boix:

- Estassada del 100%: soques que tenien de 1 a 4 tanys i s’ha tallat tot.
- Estassada del 50%: soques formades per dos tanys i s’ha deixat un.
- Estassada del 66%: soques formades per tres tanys i s’ha deixat un.
- Estassada del 75%: soques que tenien quatre tanys i s’ha deixat un.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

<table>
<thead>
<tr>
<th>Estassada del 100%</th>
<th>Estassada del 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Estassada del 66%</td>
<td>Estassada del 75%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 3.3. Els quatre models de tractament estudiats.

Considerant les 4 intensitats d’estassada i les 3 ubicacions diferents (solana, obaga i fons de vall) partíem inicialment de 12 situacions diferents per analitzar la resposta del boix a l’estassada. Un cop a camp es va detectar que en totes les zones d’exposició solana s’havia realitzat una estassada completa del boix i no va ser possible mostrejar individus amb diferent intensitat de selecció de tanys. En cada unitat d’estudi es van obtenir 30 mostres de cada tipus de tractament.

Conclouent les unitats estudi es van selecciona en base als següents criteris:
- Masses de pi roig o masses mixtes de pi roig i roure martinenc.
- Unitats amb diferent grau d’insolació.
- Boix tractat amb els diferents graus d’estassada (excepte a la solana).

El mostreig es va realitzar seguin un transsecte per tal de poder mesurar de manera aleatòria els boixos amb diferent intensitat de selecció de tanys, evitant la competència entre ells.
Els transsectes es van situar intentant avarca la part més representativa de la unitat d’estudi, i sempre que ha estat possible allunyat de qualsevol element del terreny que pugui causar efecte límit (com pistes, línies elèctriques, etc.) (Pardé, J. i Bouchon, J., 1994), per això la longitud del transsecte en cada unitat d’estudi és diferent.

Per situar els transsectes dins la unitat d’estudi es van tenir en compte diferents criteris:
- L’homogeneïtat, estructura i composició de la vegetació arbòria, mitjançant els mapes de variables biofísiques de l’arbrat de Catalunya (ICGC).
- Orientació: mapa digital d’orientació.
- Allunyat de qualsevol element del terreny que pugui causar efecte límit.
- El traçat del transsecte es va efectuar evitant seguir les corbes de nivell.

3.5.1. Distribució i localització dels transsectes

Figura 3.4. Distribució dels transsectes.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

A continuació es mostra la localització de cada transsecte mostrat (taula 3.1) on s’indica el paratge, el codi del transsecte, les coordenades UTM del centre del transsecte i la longitud del transsecte.

Taula 3.1. Ubicació dels transsectes mostrejats.

<table>
<thead>
<tr>
<th>Paratge</th>
<th>Codi transsecte</th>
<th>UTM X</th>
<th>UTM Y</th>
<th>Longitud (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Solana</td>
<td>Ille2_1</td>
<td>435085</td>
<td>4663287</td>
<td>70</td>
</tr>
<tr>
<td>La Solana</td>
<td>Ille2_2</td>
<td>434988</td>
<td>4663190</td>
<td>170</td>
</tr>
<tr>
<td>Bac del Castell</td>
<td>Ilg1_1</td>
<td>435711</td>
<td>4663441</td>
<td>130</td>
</tr>
<tr>
<td>Bac del Castell</td>
<td>Ilg1_2</td>
<td>435475</td>
<td>4663320</td>
<td>170</td>
</tr>
<tr>
<td>Els Restobles</td>
<td>Co1</td>
<td>435730</td>
<td>4662986</td>
<td>50</td>
</tr>
<tr>
<td>Serrat del Castell</td>
<td>Ilia2</td>
<td>435519</td>
<td>4663089</td>
<td>50</td>
</tr>
</tbody>
</table>

3.6. PRESA DE DADES DELS TRANSSECTES

La selecció i realització dels transsectes sempre es va dur a terme per un mínim de dues persones, i consistia en desplaçar-se fins els rodals prèviament seleccionats a gabinet amb els transsectes prèviament digitalitzats amb l’Arcmap segons les condicions descrites anteriorment. Un cop allà s’explorava i es decidia si complia les condicions esperades i en cas afirmatiu s’avaluava si era possible realitzar els transsectes digitalitzats.

En tots els casos els transsectes realitzats van ser mínimament modificats en relació els delimitats prèviament amb la fotointerpretació, a causa de que l’orografia no va permetre marcar el transsecte exactament com s’havia prèviament delimitat.

Els transsectes es van establir en el terreny per mitjà d’un aparell GPS de la marca GARMIN model eTrex 30x i una cinta mètrica metàl·lica de 50 m. La línia del transsect es va marcar amb un fil de roba, a més es va lligar una cinta blanca i vermella en l’arbre més pròxim el centre del transsecte.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

Figura 3.5. Senyalització del transsecte per iniciar el mostreig.

3.6.1. Variables mesurades en cada transsecte.

S’han inventariat un conjunt de factors d’estructura i composició de la vegetació, i orogràfics que es creu que poden explicar la resposta del boix a l’estassada.

Les variables mesurades a nivell de transsecte han estat:

1. **Dades d’identificació del transsecte.** S’apuntaven totes aquelles dades per a la identificació del transsecte, com el número de transsecte, la seva localització, la data de la presa de dades, les coordenades UTM del inici, centre i final del transsecte i el temps de desplaçament i de mostreig.

2. **Variables fisiogràfiques:**
 - **Pendent:** en tant per cent, és va mesurar mitjançant el clinòmetre.
 - **Orientació:** en graus, mesurada amb la brúixola.
 - **Exposició:** els criteris utilitzats són solana – ½ llum- obaga.

3. **A nivell de vegetació.** Els paràmetres recollits en cada estrat de vegetació són:
 - **Fracció de cabuda coberta de l’estrat herbaci, arbustiu i arbori,** calculada a partir d’estimació visual.
 - **Espècies més abundants en cada estrat.**

A més en l’estrat arbori s’ha calculat a partir d’estimació visual:
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

- Composició específica: s’ha de determinar atenent la disposició i el grau de dominància de les espècies presents.
- Distribució espacial de la massa: determinada atenent la disposició dels arbres sobre el terreny, independentment de l’espècie.

Taula 3.2. Composició específica

<table>
<thead>
<tr>
<th>Composició específica</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa homogènia o pura</td>
<td>Massa monoespecífica amb una única espècie arbòria present a l’estrat arbòri; per norma es considera una massa monoespecífica quan almenys el 90% dels peus majors pertanyen a la mateixa espècie.</td>
</tr>
<tr>
<td>Massa heterogènia barrejada peu a peu</td>
<td>Masses de diferents espècies que es barregeuen en petits grups, sempre que tinguin una alçada similar.</td>
</tr>
<tr>
<td>Massa heterogènia amb vol i subvol</td>
<td>Són masses amb dues o més espècies barrejades que quan arribin a l’estrat adult presentaran diferents alçades. O masses homogènies d’una espècie on s’ha desenvolupat un subvol d’una altra espècie tolerant a l’ombra i que amb el temps acabarà substituint-la.</td>
</tr>
<tr>
<td>Massa heterogènia barrejada en claps</td>
<td>Massa de diferents espècies que es barregeuen en claps.</td>
</tr>
</tbody>
</table>

Taula 3.3. Distribució espacial de la massa

<table>
<thead>
<tr>
<th>Distribució espacial de la massa</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa uniforme</td>
<td>L’estrat arbòri és continu en l’espai.</td>
</tr>
<tr>
<td>Disseminada en claps aïllats</td>
<td>La massa arbòria es troba dividida en porcions que tenen una superfície inferior a 0,5 hectàrees</td>
</tr>
<tr>
<td>Disseminada en individus aïllats</td>
<td>Els arbres, un a un, estan molt separats entre si o hi ha deveses.</td>
</tr>
</tbody>
</table>

3.6.2. Anàlisi i mesura de la rebrotada del boix

Per avaluar l’eficàcia dels diferents tractaments silvícoles s’ha mesurat un conjunt de variables que descriuen el patró previ el tractament que tenia la mata de boix i un conjunt de factors per quantificar l’efecte de l’estassada sobre la rebrotada induïda.

Cal clarificar que quan es parla de soca, fem referència a tot el conjunt de peus que presentava cada individu de boix abans del tractament, parlem de tanys quan s’analitza cada un dels peus que formen una soca i de rebrots per referir-nos aquells apareguts després de l’aplicació del tractament.
Caracterització de les boixes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

Al llarg del transsecte i de manera aleatòria s’han comptabilitzat, analitzat i classificat totes les soques formades de 1 a 4 tanys tractades amb diferent grau d’estassada. El mostreig va consistir en recorrer el llarg del transsecte evitant allunyar-se de l’eix més de 3 m per cada banda, cercant individus de boix que complissin les característiques estudiades, fins a obtenir 30 mostres de cada tractament en cada unitat d’estudi. En total es van mostrejar 300 soques de boix.

Variables a nivell de soca (analitzi del patró previ):

- Nº de mostra i fotografia de la mata de boix.
- El nº tanys abans del tractament: de 1 a 4 tanys.
- El nº tanys no tallats: 0 (s’han tallat tots) o 1 (s’ha deixat un tany).

Variables a nivell de tany:

- Altura del tany no tallats: mitjançant el dendròmetre BLUM-LEISS o perxa telescòpica.
- Diàmetre del tany no tallat: calculat a partir del perímetre mesurat amb la cinta mètrica.
- Diàmetre dels tanys tallats: mesurat amb la cinta mètrica.

Variables a nivell de rebrot (estudi del regenerat):

- Densitat del rebrot: El criteri qualitatiu utilitzat és alt- mig- baix.
- Nº de rebrots inferiors a 10 cm d’alçada.
- Els rebrots amb una altura igual o superior a 10 cm s’ha mesura:
 - Altura de cada un dels rebrots: mitjançant un regle graduat.
 - nº rebrots.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

Figura 3.6. a) mesurament del perímetre del tany no tallat. b) mesura de l’altura d’un rebrot.

3.7. TRACTAMENT I ANÀLISI DE LES DADES

3.7.1. Obtenció de les variables biofísiques de l’arbrat a partir de cartografia temàtica.

Les variables biofísiques de l’arbrat de Catalunya es troben disponibles a la web de l’ICGC amb una resolució espacial de 20 m i estimades a l’estat en que es trobaven l’any 2005. Aquest conjunt de variables s’han utilitzat tant en l’anàlisi per caracteritzar les formacions de boix del Parc com en l’anàlisi de la rebrotada induïda del boix.

L’obtenció dels valors de les variables biofísiques de l’arbrat de cada unitat d’actuació s’ha realitzat mitjançant les eines d’anàlisi de superfície de l’Arcmap *Spatial Analysis/Zonal/Zonal Statistic as Table*. Per la caracterització de les formacions de boix les capes utilitzades van ser:

- Biomassa aèria total (t/ha): és la biomassa (pes sec) de tota la part aèria de tots els arbres vius de diàmetre normal (DN) ≥ 7,5 cm que hi ha per hectàrea, inclou el tronc, les branques i les fulles.
- Biomassa foliar (t/ha): És la biomassa de fulles (pes sec) dels arbres vius expressat per hectàrea.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

- Àrea basal (m²/ha): és la superfície corresponent a tots els troncs dels arbres vius de DN ≥ 7,5 cm que hi ha per hectàrea.
- Fracció de cabuda coberta (%): S’entén com a recobriment arbori. És la suma de la superfície de les capçades de tots els arbres vius de DN ≥ 7,5 cm que hi ha per hectàrea.
- Alçada mitjana (m): és la mitjana de l’alçada de tots els arbres vius de DN ≥ 7,5 cm mesurats a la parcel·la.

A partir de les coordenades UTM obtingudes a camp, es van obtenir els valors de les variables biofísiques de l’arbrat de cada transsecte, mitjançant el programa ArcGis. Les capes utilitzades en l’anàlisi del rebrot del boix van ser:

- Biomassa aèria total (t/ha): és la biomassa (pes sec) de tota la part aèria de tots els arbres vius de diàmetre normal (DN) ≥ 7,5 cm que hi ha per hectàrea, inclou el tronc, les branques i les fulles.
- Volum amb escorça (m³/ha): és el volum del tronc de la base fins a l’àpex de tots els arbres vius de DN ≥ 7,5 cm que hi ha per hectàrea.
- Biomassa foliar (t/ha): És la biomassa de fulles (pes sec) dels arbres vius expressat per hectàrea.
- Àrea basal (m²/ha): és la superfície corresponent a tots els troncs dels arbres vius de DN ≥ 7,5 cm que hi ha per hectàrea.
- Fracció de cabuda coberta (%): S’entén com a recobriment arbori. És la suma de la superfície de les capçades de tots els arbres vius de DN ≥ 7,5 cm que hi ha per hectàrea.
- Diàmetre normal mitjà (cm): és la mitjana del diàmetre normal corresponent a l’àrea basal mitjana dels arbres vius de DN ≥ 7,5 cm que hi ha per hectàrea, és a dir, àrea basal dividida pel nombre d’arbres per hectàrea.
- Alçada mitjana (m): és la mitjana de l’alçada de tots els arbres vius de DN ≥ 7,5 cm mesurats a la parcel·la.
3.7.2. Variables utilitzades en l’anàlisi de la rebrotada induïda del boix

Variable dependent

La variable dependent és un Índex creat a partir de tres variables dependents (X, Y, Z) a través d’anàlisi de components principals (ACP). Les tres variables dependents que formen l’Índex són l’altura dels rebrots, el número de rebrots més grans de 10 cm en cada tany i el número de rebrots totals en cada tany.

L’anàlisi de components principals (ACP) és una tècnica estadística de síntesi de la informació, o reducció de la dimensió (número de variables). És a dir, davant un banc de dades amb moltes variables, l’objectiu serà reduir-les a un menor número perdent la menor quantitat d’informació possible. Els nous components principals o factors seran una combinació lineal de les variables originals, i a més seran independents entre sí. Un aspecte clau en ACP és la interpretació dels factors, ja que aquesta no ve donada a priori, sinó que serà deduïda observant la relació dels factors amb les variables inicials (cal estudiar tant el signe com la magnitud de les correlacions). Per escollir quants components són estadísticament significatius s’analitzarà el percentatge de variança explicada per cada factor i s’escolliran aquells factors que tinguin un valor propi major a 1.

El valor d’aquest índex (PC1) ens determinarà quines variables independents afecten a la rebrotada induïda del boix i permetrà decidir el tractament silvícola més adequat en cada cas per tal disminuir la seva densitat en les zones que provoca problemes de penetrabilitat al bosc.

Variables independents

Pel posterior anàlisi del conjunt de variables obtingudes com a potencialment explicatives de la rebrotada induïda, s’han dividit aquestes en contínues i categòriques.
Variables continues

La taula 3.4 presenta el grup de variables quantitatives.

Taula 3.4. Variables continues

<table>
<thead>
<tr>
<th>Variable topogràfica</th>
<th>Pendent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables de l’estrat arbori</td>
<td>Fracció de cabuda coberta (%) (Fcc)</td>
</tr>
<tr>
<td></td>
<td>Àrea basal (m²/ha) (AB)</td>
</tr>
<tr>
<td></td>
<td>Alçada mitjana (m)</td>
</tr>
<tr>
<td></td>
<td>Volum amb escorça (m³/ha)</td>
</tr>
<tr>
<td></td>
<td>Biomassa aèria total (t/ha)</td>
</tr>
<tr>
<td></td>
<td>Biomassa foliar (t/ha)</td>
</tr>
<tr>
<td></td>
<td>Diàmetre normal mitjà (cm) (DNm)</td>
</tr>
<tr>
<td></td>
<td>Fracció de cabuda coberta (%) estimada a camp (Fcc arbori)</td>
</tr>
<tr>
<td>Variables dendromètriques del boix</td>
<td>Número de tanys previs de la soca</td>
</tr>
<tr>
<td></td>
<td>Número de tanys no tallats</td>
</tr>
<tr>
<td></td>
<td>Altura del tany no tallats (cm)</td>
</tr>
<tr>
<td></td>
<td>Diàmetre del tany no tallat (cm)</td>
</tr>
<tr>
<td></td>
<td>Diàmetre dels tanys tallats (cm)</td>
</tr>
<tr>
<td></td>
<td>Diàmetre total soca tallada (cm)</td>
</tr>
<tr>
<td></td>
<td>Àrea basimètrica de la soca tallada (cm²) (AB soca tallada)</td>
</tr>
</tbody>
</table>

Variables categòriques

Són variables que no prenen forma numèrica, sinó categòrica o atribut.

La classificació de l’orientació de cada unitat es va realitzar segons Altun et al. (2008) (taula 3.5).
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Materials i mètodes

Taula 3.5. Classes d’orientació segons la classificació realitzada per Altun et al. (2008).

<table>
<thead>
<tr>
<th>Classe</th>
<th>Orientació</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sud (oest, sud, sudoest i sudest)</td>
</tr>
<tr>
<td>2</td>
<td>Nord (est, nord, nordoest i nordest)</td>
</tr>
</tbody>
</table>

La composició específica es va classificar segons les instruccions de redacció i l’inventari forestal del Centre de la Propietat Forestal (CPF, 2004) (taula 3.6).

Taula 3.6. Classificació de la composició específica.

<table>
<thead>
<tr>
<th>Classe</th>
<th>Composició específica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Massa homogènia o pura</td>
</tr>
<tr>
<td>2</td>
<td>Massa heterogènia barrejada peu a peu</td>
</tr>
<tr>
<td>3</td>
<td>Massa heterogènia amb vol i subvol</td>
</tr>
<tr>
<td>4</td>
<td>Massa heterogènia barrejada en claps</td>
</tr>
</tbody>
</table>

En l’estudi només hi ha representades les classes 1 i 2.

La classificació de la distribució espacial de la massa es va realitzar segons les instruccions de redacció i l’inventari forestal del Centre de la Propietat Forestal (CPF, 2004) (taula 3.7).

Taula 3.7. Classificació de la distribució espacial de la massa.

<table>
<thead>
<tr>
<th>Classe</th>
<th>Distribució espacial de la massa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Massa uniforme</td>
</tr>
<tr>
<td>2</td>
<td>Disseminada en claps aïllats</td>
</tr>
<tr>
<td>3</td>
<td>Disseminada en individus aïllats</td>
</tr>
</tbody>
</table>
3.8. ANÀLISI ESTADÍSTIC

3.8.1. Anàlisi estadístic de les formacions de boix del Parc del Castell de Montesquiu

Per quantificar la rellevància dels diferents factors qualitatius causants de la variació del recobriment de boix (%) es va dur a terme un anàlisi de variància. Els factors analitzats van ser el tipus de vegetació arbòria i les diferents classes d’orientació, segons la classificació realitzada per Altun et al. (2008).

Per determinar la rellevància de les diferents variables biofísiques de l’arbrat en la variació del recobriment del boix es va realitzar un anàlisi de correlacions.

En els dos casos es va considerar que un factor era significatiu si presentava un nivell de significació inferior el 5%.

Les dades de recobriment arbustiu utilitzades en l’anàlisi corresponen a les obtingudes en l’inventari del PTGMF 2000 i 2013. Amb la base de dades de cada inventari es va realitzar un anàlisi. A més, les dades pertanyents a l’inventari del 2013 es van tractar per separat les unitats tractades i les no tractades, per evitar les distorsions per l’efecte de l’estassada i les aclarides.

3.8.2. Anàlisi estadístic del rebrot del boix

En primer lloc es va analitzar un anàlisi de correlació d’Spearman entre la variable dependent (índex calculat) i cada una de les variables independents per veure quines d’aquestes variables s’associaven individualment a l’Índex. El coeficient de correlació de Spearman és un coeficient no paramètric que mesura el grau de relació
entre dos variables aleatòries. El fet de que existeixi correlació entre les variables no implica que existeixi causalitat o dependència entre elles. El valor del coeficient pot variar de -1 a +1. Mentre major sigui el valor absolut del coeficient, més forta serà la relació entre les variables.

En segon lloc per veure quines variables estaven associades a l’índex es va estimar un model de regressió lineal múltiple multinivell quedant-nos en el model aquelles variables que eren estadísticament significatives. Les variables continues es van introduir al model com a continues mentre que les variables categòriques es van introduir com a variables binàries (dummies).

L’anàlisi multinivell és necessari quan es troben subjectes d’estudi que estan classificats en ordre jeràrquic. En aquest cas tenim un model de tres nivells, en el primer nivell el brot, en un segon nivell el tany i en el tercer la soca. Aquest models proporcionen, per tant, una resposta estadística més adaptada i realista que els clàssics models lineals, ja que son sensibles a l’agregació dels grups. Com a conseqüència, aporten un tractament estadístic bastant adequat de les diferències individuals i grupals en els nivell corresponents, utilitzant submodels associats a les diferents nivells dins d’un mateix model, i explorant la relació entre les unitats de observació que constitueixen l’estructura jeràrquica (Bryk i Raudenbush, 1987 i 1992; Goldstein, 1995; Goldstein, H., et al., 1998; Van der Leeden, 1998; Snijders i Bosker, 1999).

Figura 3.7. Estructura de les dades.

Per a tots els anàlisis estadístics es va emprar un nivell de significació del 5%. Per fer els anàlisis de dades es va emprar el paquet estadístic STATA/SE versió 14.0.
Caracterització de les boixades, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Resultats

4. RESULTATS
4. RESULTATS

4.1. CARACTERITZACIÓ DE LES FORMACIONS DE BOIX DEL PARC DEL CASTELL DE MONTESQUIU

A continuació es mostra el mapa (Figura 4.1) de recobriment de l’estrat arbustiu, en percentatge, de cada unitat d’actuació segons l’inventari del PTGMF (2013) digitalitzat amb el suport de GIS Arcmap 10.3.

![Mapa del recobriment arbustiu](image)

Figura 4.1. Mapa del recobriment arbustiu (%).

Cal tenir en compte que l’inventari només es va realitzar en les unitats que es preveu actuar. Les unitats que no prenen valors són unitats que no van ser inventariades,
dins aquet grup les unitats no codificades corresponen a zones d’equipaments i d’ús públic del Parc, espais fluvials i nusos viaris.

Aquest mapa representa la situació de l’estrat arbustiu l’any 2013. Per conèixer amb més exactitud les masses de boix, a continuació s’analitza per una banda les unitats que en el moment de l’inventari s’havia estassat el sotabosc i per altra banda les que continuava inalterat. A més també s’ha realitzat l’anàlisi amb els valors del recobriment del boix de l’inventari del PTGMF del 2000 on cap unitat havia estat tractada.

Per conèixer si existeix relació entre el tipus de vegetació arbòria i el recobriment arbustiu, prèviament s’ha realitzat una estratificació dels tipus de vegetació del PTGMF, agrupant-los amb classes més genèriques segons les espècies principals més dominants. Per a l’obtenció dels tipus de vegetació de cada unitat d’actuació s’ha contrastat la classe de vegetació definida pel PTGMF i el tipus hàbitat CORINE. A continuació és presenta el mapa resultant de l’estratificació.

![Figura 4.2. Mapa dels tipus de vegetació.](image-url)
4.1.1. Anàlisi de les unitats tractades

4.1.1.1. Variables qualitatives. Anàlisi de variància

Tipus de vegetació arbòria

A continuació (taula 4.1) es mostren els resultats obtinguts entre els valors del recobriment arbustiu (Fcc arbustiu) i les diferents classes de vegetació arbòria de les unitats d’actuació tractades.

<table>
<thead>
<tr>
<th>Font de Variació</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>nivell p</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Grups</td>
<td>0,05444</td>
<td>1</td>
<td>0,05444</td>
<td>1,19512</td>
<td>0,29993</td>
<td>4,9646</td>
</tr>
<tr>
<td>Dintre de Grups</td>
<td>0,45556</td>
<td>10</td>
<td>0,04556</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0,51</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’anàlisi mostra que no hi ha diferències significatives del recobriment del boix depenent del tipus de vegetació. Cal precisar que per realitzar aquest anàlisi s’han agrupat els tipus de vegetació en dos grups, degut a que en algun tipus només es disposava d’una unitat d’actuació. A la taula 4.2 es presenten els valors promig del recobriment arbustiu en funció de la classe de vegetació.

<table>
<thead>
<tr>
<th>Tipus de vegetació</th>
<th>Nº d'unitats</th>
<th>Fcc arbustiu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosc mixt de pi roig i roure</td>
<td>9</td>
<td>31,1</td>
</tr>
<tr>
<td>Altres tipus de bosc</td>
<td>3</td>
<td>46,6</td>
</tr>
</tbody>
</table>

S’observa que existeix una diferència del 15,5% entre els valors mitjans del Fcc arbustiu dels diferents tipus de vegetació. En el següent gràfic (figura 4.3) es presenta el recobriment arbustiu (%) de cada unitat d’actuació tractada classificades segons el tipus de bosc.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Figura 4.3. Recobriment arbustiu (%) de les unitats d’actuació tractades.

En el gràfic s’observa que la unitat Ic2 és la que presenta un valor més elevat, aquesta es va estassar l’any 2003 i segons l’inventari del PTGMF l’estrat arbustiu està compost únicament per boix, a més durant el 2003 i 2004 es va aclarir la massa arbòria. La prossegueixen la IIc2, IXa i VIc totes amb un 60% d’estrat arbustiu i estassades l’any 2009-2012, 2008 i 2006 respectivament. La unitat IXa només es va estassar parcialment i tant aquesta com la IIc2 l’estassada va anar seguida d’una aclarida de l’estrat arborí.

Les unitats Ib2 i Ic1 són les que presenten valors més baixos. Ic1 es va estassar i aclarir durant el 2005. La Ib2 l’any 2006 es va tractar el sotabosc fent una estassada dels esbarzers i una selecció de tanys de boix i el 2005 es va aclarir el sector nord (d’orientació nord-oest).

Finalment esmentar que la unitat Ic3 no presenta boix, el seu sotabosc està format per un 80% d’esbarzer.

Orientació

A continuació (taula 4.3) es mostren els resultats obtinguts en l’anàlisi de variància dels valors del recobriment arbustiu (*Fcc arbustiu*) (%) en funció de les
diferents classes d’orientació (2), segons la classificació realitzada per Altun et al. (2008), a que pertany cadascuna de les unitats d’actuació.

Taula 4.3. Anàlisi de variància del Fcc arbustiu (%) en funció de l’orientació.

<table>
<thead>
<tr>
<th>Font de Variació</th>
<th>SS</th>
<th>GL</th>
<th>MS</th>
<th>F</th>
<th>nivell p</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Grups</td>
<td>0,00375</td>
<td>1</td>
<td>0,00375</td>
<td>0,07407</td>
<td>0,79103</td>
<td>4,9646</td>
</tr>
<tr>
<td>Dintre de Grups</td>
<td>0,50625</td>
<td>10</td>
<td>0,05063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0,51</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’anàlisi indica que no hi ha diferències significatives del valor del recobriment arbustiu depenent de l’orientació.

A la taula 4.4 es presenten els valors promig del Fcc arbustiu en funció de l’orientació.

Taula 4.4. Valors promig del Fcc arbustiu (%) en funció de l’orientació.

<table>
<thead>
<tr>
<th>Orientació</th>
<th>Nº d’unitats</th>
<th>Fcc arbustiu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nord</td>
<td>4</td>
<td>37,5</td>
</tr>
<tr>
<td>Sud</td>
<td>8</td>
<td>33,7</td>
</tr>
</tbody>
</table>

La diferència entre l’orientació amb Fcc arbustiu més elevada (Nord) i més baixa (sud) és només de 3,8%.

4.1.1.2. Relació entre el recobriment arbustiu i les variables biofísiques de l’arbrat.

A la taula 4.5 es presenten els coeficients de correlació entre el recobriment arbustiu i les diferents variables biofísiques de l’arbrat (ICGC).

Taula 4.5. Relacions entre els factors biofísics de l’arbrat i el Fcc arbustiu.

<table>
<thead>
<tr>
<th></th>
<th>AB (m²/ha)</th>
<th>Hm (m)</th>
<th>Fcc (%)</th>
<th>BAT* (t/ha)</th>
<th>BF* (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>-0,049</td>
<td>-0,245</td>
<td>0,089</td>
<td>0,004</td>
<td>0,078</td>
</tr>
<tr>
<td>probabilitat</td>
<td>0,898</td>
<td>0,445</td>
<td>0,782</td>
<td>0,99</td>
<td>0,80</td>
</tr>
</tbody>
</table>

*Biomassa aèria total (BAT); Biomassa foliar (BF)
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

L’anàlisi no proporciona cap resultat significatiu entre el recobriment arbustiu i les variables biofísiques (ICGC) examinades, presentat totes les relacions un nivell de significació superior el 5%.

4.1.2. Anàlisi de les unitats no tractades

4.1.2.1. Variables qualitatives. Anàlisi de variància

Tipus de vegetació arbòria

A continuació (taula 4.6) es mostren els resultats obtinguts entre els valors del recobriment arbustiu (Fcc arbustiu) i les diferents classes de vegetació arbòria de les unitats d’actuació no tractades.

Taula 4.6. Anàlisi de variància del Fcc arbustiu (%) en funció del tipus de vegetació arbòria.

<table>
<thead>
<tr>
<th>Font de variació</th>
<th>SS</th>
<th>GL</th>
<th>MS</th>
<th>F</th>
<th>nivell p</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Grups</td>
<td>0,15096</td>
<td>3</td>
<td>0,05032</td>
<td>0,85612</td>
<td>0,48374</td>
<td>3,23887</td>
</tr>
<tr>
<td>Dintre de Grups</td>
<td>0,94042</td>
<td>16</td>
<td>0,05878</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,09138</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’anàlisi indica que no hi ha diferències significatives del valor de Fcc arbustiu depenent del tipus de vegetació arbòria. Per realitzar aquest anàlisi s’ha agrupat els tipus de vegetació amb grups més genèrics especificats a continuació.

A la taula 4.7 es presenten els valors promig del recobriment arborí en funció de la classe de vegetació arbòria.

Taula 4.7. Valors promig del Fcc arbustiu (%) en funció dels tipus de vegetació.

<table>
<thead>
<tr>
<th>Tipus de Vegetació</th>
<th>Nº d’unitats</th>
<th>Fcc arbustiu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosc mixt de pi roig i roure martinenc</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>Bosc mixt de pi roig i caducifolis.</td>
<td>4</td>
<td>57,5</td>
</tr>
</tbody>
</table>
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Resultats

<table>
<thead>
<tr>
<th>Unitat d’actuació</th>
<th>Recobriment arbustiu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pineda de pi roig</td>
<td>38,3</td>
</tr>
<tr>
<td>Fageda i roureda</td>
<td>32,5</td>
</tr>
</tbody>
</table>

S’observa que el grup Fageda i roureda present el valor més baix, i el bosc mixt de pi roig i caducifolis presenta el valor més elevat, tot i que en ambdós casos no és disposa de unitats suficients per determinar si la variació l Fcc arbustiu és degut el tipus de bosc o a causa d’altres característiques de la unitat.

En els següent gràfic (figura 4.4) es presenta el recobriment arbustiu (%) de cada unitat d’actuació no tractada classificades segons el tipus de bosc, segons l’inventari que es va realitzar el 2013.

Figura 4.4. Recobriment arbustiu (%) de les unitats d’actuació no tractades.

Les unitats d’actuació que apareixen amb els valors a sobre la barra són les unitats que es van tractar posteriorment a l’inventari del 2013.

Com es pot observar en el gràfic, les unitats amb més recobriment arbustiu, són masses mixtes de pi roig i caducifolis, masses mixtes de pi roig i roure martinenc i la...
Caracterització de les boioxes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

La pineda de pi roig IIg1. A l’extrem oposat, la pineda de pi roig (Ia1) és la que presenta menys boix, aquesta unitat d’orientació solana presenta un 60% d’esbarzer i heura. La resta de tipus de bosc adopten valors intermedis.

En el grup de bosc mixt de pi i roure les unitats VIIc4 Ib1 i IIIf1 tenen un recobriment arbustiu baix en comparació a la resta. D’aquestes, precisar que la unitat Ib1 es va aclarir parcialment a l’any 2005 i presenta una elevada densitat d’esbarzers. I la unitat VIIc4 tot i que el boix és l’espècie arbustiva dominant, es presenta generalment amb individus dispersos, sense formar masses denses, per això es va determinar que es destinarà a zona de pastura de sotabosc (PTG MF 2013).

Orientació

A continuació (taula 4.8) es mostren els resultats obtinguts en l’anàlisi de variància dels valors del recobriment arbustiu (Fcc arbustiu) (%) en funció de les diferents classes d’orientació (2), segons la classificació realitzada per Altun et al. (2008), a que pertany cadascuna de les unitats d’actuació.

<table>
<thead>
<tr>
<th>Font de Variació</th>
<th>SS</th>
<th>GL</th>
<th>MS</th>
<th>F</th>
<th>nivell p</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Grups</td>
<td>0,20915</td>
<td>1</td>
<td>0,20915</td>
<td>4,26735</td>
<td>0,05355</td>
<td>4,41387</td>
</tr>
<tr>
<td>Dintre de Grups</td>
<td>0,88222</td>
<td>18</td>
<td>0,04901</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,09138</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’anàlisi indica que no hi ha diferencies significatives del valor de Fcc arbustiu depenent de l’orientació amb un nivell de significació del 5%. Tot i no ser significativa, presenta un valor pròxim al 5%, suggerint que existeix alguna diferència dels valors del Fcc arbustiu depenent de l’orientació.

A la taula 4.9 es presenten els valors promig de Fcc arbustiu en funció de les dues orientacions.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Taula 4.9. Valors promig del Fcc arbustiu (%) en funció de l’orientació.

<table>
<thead>
<tr>
<th>Orientació</th>
<th>Nº d’unitats</th>
<th>Fcc arbustiu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nord</td>
<td>11</td>
<td>60%</td>
</tr>
<tr>
<td>Sud</td>
<td>10</td>
<td>39,4%</td>
</tr>
</tbody>
</table>

La diferència entre l’orientació amb Fcc arbustiu més elevada (Nord) i la més baixa (Sud) és de 20,56%.

La figura 4.5 mostra els valors de recobriment arbustiu (%) de cada unitat d’actuació classificats en funció de les dues orientacions.

Figura 4.5. Recobriment arbustiu (%) de les unitats d’actuació no tractades.

Tot sembla indicar que no es pot descartar la hipòtesi de que hi ha diferències de recobriment arbustiu segons l’orientació, per obtenir resultats més concrets caldria fer un estudi més específic i augmentar el número de mostres. Per això a continuació (apartat 4.1.3) es realitza l’anàlisi amb les dades del PTGMF del 2000, obtingudes abans que es fes qualsevol actuació i que ens permet analitzar totes les unitats conjuntament sense necessitat de diferenciar les tractades i no tractades.
4.1.2.2. Relació entre el recobriment arbustiu i les variables biofísiques de l’arbrat.

A la taula 4.10 es presenten els coeficients de correlació entre el recobriment arbustiu i les diferents variables biofísiques de l’arbrat (ICGC).

Taula 4.10. Relacions entre els factors biofísics de l’arbrat i el Fcc arbustiu.

<table>
<thead>
<tr>
<th>AB (m²/ha)</th>
<th>Hm (m)</th>
<th>Fcc (%)</th>
<th>BAT (t/ha)</th>
<th>BF (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0,55</td>
<td>0,157</td>
<td>0,385</td>
<td>0,583</td>
</tr>
<tr>
<td>probabilitat</td>
<td>0,0117</td>
<td>0,921</td>
<td>0,507</td>
<td>0,094</td>
</tr>
</tbody>
</table>

Biomassa aèria total (BAT); Biomassa foliar (BF)

A l’anàlisi (taula 4.10 i figura 4.6) s’observa una relació positiva entre Fcc arbustiu i l’àrea basal i també entre el Fcc arbustiu i la biomassa foliar, amb una R² de 0,30 i 0,34 respectivament i amb un nivell de significació < 5%.

A la figura 4.6 es representa la relació entre el Fcc arbustiu i l’àrea basal i la biomassa foliar.

Figura 4.6. Recobriment arbustiu (%) en funció a) l’àrea basal (m²/ha) i b) de la biomassa foliar (t/ha) de cada unitat.
En la figura 4.6 s’observa la tendència positiva entre el Fcc arbustiu i l’àrea basal i també entre el Fcc arbustiu i la biomassa foliar.

4.1.3. Anàlisi de les unitats a partir de les dades del PTGMF 2000

4.1.3.1. Variables qualitatives. Anàlisi de variància

Tipus de vegetació arbòria

A continuació (taula 4.11) es mostren els resultats obtinguts entre els valors del recobriment de boix (Fcc boix) i les diferents classes de vegetació arbòria, amb les dades de l’inventari del 2000.

Taula 4.11. Anàlisi de variància de Fcc boix (%) en funció del tipus de vegetació arbòria.

<table>
<thead>
<tr>
<th>Font de Variació</th>
<th>SS</th>
<th>GL</th>
<th>MS</th>
<th>Valor F</th>
<th>nivell p</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Grups</td>
<td>2.285,746</td>
<td>5</td>
<td>457,149</td>
<td>0,80486</td>
<td>0,55355</td>
<td>2,46965</td>
</tr>
<tr>
<td>Dintre de Grups</td>
<td>21.015,416</td>
<td>37</td>
<td>567,984</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23.301,163</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’anàlisi mostra que no hi ha diferencies significatives del recobriment del boix dependent de el tipus de vegetació.

A la taula 4.12 es presenten els valor promig de recobriment de boix en funció de la classe de vegetació arbòria.

Taula 4.12. Valor promig de Fcc boix (%) en funció del tipus de vegetació.

<table>
<thead>
<tr>
<th>Tipus de vegetació</th>
<th>Nº d’unitats</th>
<th>Fcc boix (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosc mixt de pi roig i caducifolis</td>
<td>5</td>
<td>67</td>
</tr>
<tr>
<td>Bosc mixt de pi roig i roure martinenc</td>
<td>16</td>
<td>61,9</td>
</tr>
<tr>
<td>Fageda</td>
<td>3</td>
<td>46,7</td>
</tr>
<tr>
<td>Pineda de pi roig</td>
<td>4</td>
<td>42,5</td>
</tr>
</tbody>
</table>
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

S’observa que els bosc mixt de pi roig i caducifolis i la roureda presenten els valor més elevats, tot i que es tenen poques unitats que pertanyin en aquests tipus de bosc, igual passa amb les pinedes i fagedes, aquestes presenten els valors més baixos de Fcc de boix però el tenir poques unitats és difícil determinar si la variació del Fcc boix és degut al tipus de vegetació arbòria o a causa d’altres característiques de l’estació.

Orientació

A continuació (taula 4.13) es mostren els resultats obtinguts en l’anàlisi de variància dels valors del recobriment de boix (Fcc boix (%)) en funció de les diferents classes d’orientació (2), segons la classificació realitzada per Altun et al. (2008), a que pertany cadascuna de les unitats d’actuació amb les dades de l’inventari del 2000.

Taula 4.13. Anàlisi de variància del Fcc boix (%) en funció de l’orientació.

<table>
<thead>
<tr>
<th>Font de Variació</th>
<th>SS</th>
<th>GL</th>
<th>MS</th>
<th>Valor F</th>
<th>nivell p</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre Grups</td>
<td>3.849,615</td>
<td>1</td>
<td>3.849,615</td>
<td>7,65868</td>
<td>0,00837</td>
<td>4,07265</td>
</tr>
<tr>
<td>Dintre de Grups</td>
<td>21.111,180</td>
<td>42</td>
<td>502,647</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24.960,795</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L’anàlisi indica que hi ha diferències significatives del valor del Fcc de boix depenent de l’orientació.

A la taula 4.14 Es presenten els valors promig de Fcc boix en funció de l’orientació.

Taula 4.14. Valors promig del Fcc boix(%) en funció de l’orientació.

<table>
<thead>
<tr>
<th>Orientació</th>
<th>Nº d’unitats</th>
<th>Fcc boix (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nord</td>
<td>23</td>
<td>65,87</td>
</tr>
<tr>
<td>Sud</td>
<td>21</td>
<td>47,14</td>
</tr>
</tbody>
</table>
La diferència entre l’orientació amb Fcc de boix més elevada (Nord) i la més baixa (Sud) és de 18,7%.

La figura 4.7 mostra els valors de recobriment de boix (%) de cada unitat d’actuació classificats en funció de les dues orientacions.

Figura 4.7. Representació dels valors de Fcc boix de cada unitat d’actuació.

Els resultats obtinguts indiquen que les unitats orientades el nord presenten de mitjana un major recobriment de boix que les unitats orientades el sud.

4.1.3.2. Relació entre el recobriment arbustiu i les variables biofísiques de l’arbrat.

A la taula 4.15 es presenten els coeficients de correlació entre el recobriment de boix, amb les dades de l’inventari del 2000, i les diferents variables biofísiques de l’arbrat (ICGC).

Taula 4.15. Relacions entre els factors biofísics de l’arbrat i el Fcc boix.

<table>
<thead>
<tr>
<th></th>
<th>AB (m²/ha)</th>
<th>Hm (m)</th>
<th>Fcc (%)</th>
<th>BAT* (t/ha)</th>
<th>BF* (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0,254</td>
<td>-0,041</td>
<td>0,174</td>
<td>0,088</td>
<td>0,282</td>
</tr>
<tr>
<td>probabilitat</td>
<td>0,0949</td>
<td>0,789</td>
<td>0,258</td>
<td>0,571</td>
<td>0,063</td>
</tr>
</tbody>
</table>

*Bio massa aèria total (BAT); Biomassa foliar (BF)
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

L’anàlisi no proporciona cap resultat significatiu entre el recobriment de boix i les variables biofísiques de l’arbrat examinades, presentat totes les relacions un nivell de significació superior el 5%. La manca de resultats significatius pot ser degut a que les variables biofísiques de l’arbrat (ICGC) s’han estimat amb dades posteriors a l’inventari del 2000.

4.2. RESULTATS DE L’ANÀLISI ESTADÍSTIC DEL REBROT DEL BOIX

4.2.1 Anàlisi de components principals

A continuació (taula 4.16 i 4.17) es presenta l’anàlisi de components principals.

Taula 4.16. Valor propi dels components principal i variància explicada.

<table>
<thead>
<tr>
<th>Component</th>
<th>Valor propi</th>
<th>Diferència</th>
<th>Variància explicada</th>
<th>Variància explicada acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp1</td>
<td>1,98542</td>
<td>1,04485</td>
<td>0,6618</td>
<td>0,6618</td>
</tr>
<tr>
<td>Comp2</td>
<td>0,940572</td>
<td>0,866564</td>
<td>0,3135</td>
<td>0,9753</td>
</tr>
<tr>
<td>Comp3</td>
<td>0,0740078</td>
<td>0,0247</td>
<td>1,0000</td>
<td></td>
</tr>
</tbody>
</table>

Taula 4.17. Càrregues factorials de cada component principal amb cada variable dependent.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Comp1</th>
<th>Comp2</th>
<th>Comp3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura dels rebrots</td>
<td>0,2526</td>
<td>0,9626</td>
<td>0,0948</td>
</tr>
<tr>
<td>Nº rebrots ≥10cm</td>
<td>0,6919</td>
<td>-0,1121</td>
<td>-0,7132</td>
</tr>
<tr>
<td>Nº rebrots totals</td>
<td>0,6760</td>
<td>-0,2465</td>
<td>0,6945</td>
</tr>
</tbody>
</table>

En l’anàlisi dels tres components principals (taula 4.16) es pot observar que tan sols el Comp1 té un valor propi superior a 1, per això només s’ha seleccionat aquest
component principal (Comp1) per l’anàlisi posterior, aquest Comp1 explica el 66% de la variància de les dades.

En la taula 4.17 apareixen les càrregues factorials de cada component principal amb cada variable dependent. En el cas de Comp1 té una càrrega positiva amb les 3 variables. Per tant, estem parland d’un tany que té molts rebrots i aquests són alts. En canvi Comp2 té una càrrega positiva amb l’altura dels rebrots i càrregues negatives amb el número de rebrots totals i més grans de 10 cm, estem parland d’un tany que té pocs rebrots però aquests són alts. Comp2 tot i que explica el 31% de la variància, el tenir un valor propi inferior a 1 no s’ha utilitzat per l’estudi.

Així doncs, l’índex PC1 (Comp1) descriu el vigor del rebrot del boix, tenint en compte l’altura dels rebrots, el número de rebrots totals i el número de rebrots més grans o iguals 10 cm, per tant un major valor de PC1 indica una elevada densitat de rebrots i a més que aquests rebrots són alts.

A la taula 4.18 es presenten les correlacions significatives entre el component principal 1 (PC1) i les variables independents.

Taula 4.18. Correlacions

<table>
<thead>
<tr>
<th>Variables independents</th>
<th>PC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientació</td>
<td>-0,0727</td>
</tr>
<tr>
<td>Fracció de cabuda coberta (%) (Fcc)</td>
<td>-0,0506</td>
</tr>
<tr>
<td>Àrea basal (m²/ha) (AB)</td>
<td>-0,0438</td>
</tr>
<tr>
<td>Volum amb escorça (m³/ha)</td>
<td>-0,0836</td>
</tr>
<tr>
<td>Biomassa aèria total (t/ha)</td>
<td>-0,0643</td>
</tr>
<tr>
<td>Biomassa foliar (t/ha)</td>
<td>-0,0643</td>
</tr>
<tr>
<td>Diàmetre normal mitjà (cm) (DNm)</td>
<td>0,0304</td>
</tr>
<tr>
<td>Fcc arbòria (%) (mesurat a camp)</td>
<td>-0,1989</td>
</tr>
<tr>
<td>Composició específica</td>
<td>-0,1577</td>
</tr>
<tr>
<td>Nº tanys previs</td>
<td>-0,3766</td>
</tr>
<tr>
<td>Nº tanys no tallats</td>
<td>-0,3546</td>
</tr>
</tbody>
</table>
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Resultats

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura dels tanys no tallats (cm)</td>
<td>-0.3469</td>
</tr>
<tr>
<td>Diàmetre dels tanys no tallats (cm)</td>
<td>-0.3441</td>
</tr>
<tr>
<td>Diàmetre dels tanys tallats (cm)</td>
<td>0.5606</td>
</tr>
<tr>
<td>Diàmetre total de la soca tallada (cm)</td>
<td>0.1025</td>
</tr>
<tr>
<td>AB soca tallada (cm²)</td>
<td>0.3197</td>
</tr>
</tbody>
</table>

Totes les variables biofísiques de l’arbrat (ICGC), excepte el diàmetre normal mitjà (DNm), tenen una correlació negativa amb PC1, aquesta relació pot estar indicant que com més desenvolupat i dens és l’estrat arbori, menys creix el rebrot de boix com a conseqüència de que li arriba una menor quantitat de llum. Igual passa amb l’orientació que també presenta una correlació negativa assenyalant que a l’obaga el rebrot del boix és menys vigorós que a la solana. La correlació positiwa amb el DNm pot ser deguda a que aquesta variable està relacionada amb la bona qualitat d’estació que fa que els arbres creixin més i per tant el boix també.

La Fcc arbòria (mesurat a camp) coincidint amb la Fcc (ICGC) també presenta una correlació negativa amb PC1. Ambdós estan relacionats entre ells un 68%, es podria esperar que el tractar-se de la mateixa variable tinguessin una correlació més elevada, però s’han obtingut a partir de mètodes diferent i en èpoques diferents. A diferència de la Fcc arbòria mesurada a camp, que és el percentatge de sòl recobert per la vegetació de port arbori i el seu valor màxim és 100 %, la Fcc del ICGC s’ha obtingut aplicant a cada arbre mesurat a la parcel·la de mostreig l’equació al·lomètrica que relaciona el diàmetre de capçada segons l’espècie amb el seu diàmetre normal, i el seu valor pot ser superior el 100 % a causa del solapament de les capçades.

La correlació negativa entre la composició específica i PC1 indica que PC1 és més elevada en masses homogènies que en masses heterogènies barrejades peu a peu.

Les variables descriptives de les característiques de la soca del boix previ al tractament tenen una relació negativa amb PC1, indicant una associació entre la reducció del vigor del rebrot a més nombre de tanys previs, a la presencia de un tany no tallat, i a més alçada del tany no tallat.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (Buxus sempervirens) al Parc del Castell de Montesquiu.

En canvi, la dimensió dels tanys tallats té una correlació positiva amb PC1, assenyalant que com més gran és el diàmetre més vigorosos són els rebrots.

4.2.2. Regressió lineal múltiple multinivell

La regressió lineal múltiple multinivell ha detectat com a variables explicatives de la variació de l’índex PC1 l’orientació, el número de tanys no tallats, el número de tanys previs i el diàmetre del tany tallat. El model d’ajust es presenta a la taula 4.19.

Taula 4.19. Influència de les variables sobre l’índex PC1

| PC1 | Coef. | Error estàndard | z | P>|z| | Interval de confiança 95%: |
|----------------------------|-------|-----------------|-------|------|---------------------------|
| Orientació | -0,756| 0,087 | -8,68 | 0,000| -0,927 -0,585 |
| Nº tanys no tallats | -0,710| 0,086 | -8,21 | 0,000| -0,880 -0,541 |
| Nº tanys previs | -0,176| 0,040 | -4,42 | 0,000| -0,254 -0,098 |
| Diàmetre tany tallat | 0,289 | 0,018 | 16,14 | 0,000| 0,254 0,324 |

Taula 4.20. Variació de l’índex PC1 segons l’agrupació

<table>
<thead>
<tr>
<th>Paràmetres d’efectes aleatoris</th>
<th>Estimació</th>
<th>Error estàndard</th>
<th>Interval de confiança 95%:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soca: var(_cons)</td>
<td>0,231</td>
<td>0,040</td>
<td>0,165 0,325</td>
</tr>
<tr>
<td>Tany var(_cons)</td>
<td>0,295</td>
<td>0,026</td>
<td>0,247 0,350</td>
</tr>
</tbody>
</table>

Les variables significatives que expliquen el creixement del rebrot boix en altura i densitat (nº de rebrots totals i nº de rebrots ≥10cm per tany) segons el model de regressió lineal múltiple multinivell pel PC1 són l’orientació, el número de tanys no tallats i el número de tanys previs, tots amb un coeficient negatiu i el diàmetre del tany tallat amb un coeficient positiu. Cada una d’aquests variables és significativa independentment de les altres. Per exemple, independentment del nº de tanys previs, com més gran és el diàmetre del tany tallat, PC1 tindrà un valor més elevat.
L’orientació amb un coeficient negatiu significa que PC1 augmenta en l’orientació 1, és a dir a la solana el rebrot del boix és més alt i més dens que en l’obaga. El fet de que el boix creixi a l’obaga en lloc de la solana implica que tindrà un índex 0,75 (IC 95%: -0,93;-0,59) punts inferior, independentment dels tanys previs, del número de tanys no tallats i del diàmetre del tany tallat.

El coeficient negatiu de la variable número de tanys no tallats, representa que l’índex PC1 augmenta quan s’han tallat tots els tanys de la soca (nº de tanys no tallats és 0), per tant en els casos on s’ha deixat un tany en peu, el rebrot de boix és menys vigorós (tant en altura com en densitat), tindrà un índex 0,71 (IC 95%: -0,9;-0,54) punts inferior independentment de la resta de variables explicatives.

La relació entre el número de tanys previs i PC1 també és negativa, explica que com més tanys previs té la soca de boix menys rebrota. El fet de que la soca de boix estigui formada per un tany més implica que l’índex PCI tindrà 0,18 (IC 95%: -0,25;-0,1) punts menys, independentment de la resta de variables explicatives.

El diàmetre del tany tallat té una relació positiva amb PC1, significa que com més gran és el diàmetre del tany tallat més rebrota i més alts són aquets rebrots. L’anàlisi indica que per cada increment en cm del diàmetre del tany tallat, l’índex tindrà 0,29 punts superior, independentment de la resta de variables explicatives.

La resta de variables que sortien amb correlacions significatives, en el model de regressió lineal múltiple no surten com a variables explicatives del creixement del rebrot. Tot i així els signes de les correlacions confirmen els resultats obtinguts en el model de regressió.

La taula 4.20 indica la variació de l’índex PC1 segons si s’agrupa per soca o s’agrupa per tany.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

5. DISCUSSIÓ
5. DISCUSSION

5.1. CARACTERITZACIÓ DE LES BOIXEDES DEL PARC

L’anàlisi de variància de la variació del recobriment arbustiu en funció dels tipus de vegetació no ha mostrat diferències significatives en cap dels casos estudis. En el cas de les unitats no tractades (2000 i 2013) en comparar les mitjanes obtingudes (taula 4.7 i 4.12) s’observa una certa tendència que en els boscos mixtos de pi roig i roure i els boscos mixtos caducifolis presenten valors més elevats que la resta de tipologies. La manca de resultats significatius pot evidenciar la plasticitat del boix, trobant-lo tant en el sotabosc en boscos de fulla perenne com en els de fulla caduca, a clarianes del dossor i en àrees amb plena llum del sol (Letts, M.G. et al., 2012). L’estudi Krause, P.F. et al. (2003) tampoc va obtenir resultats de la variació del sotabosc en funció de l’espècie arbòria.

En l’anàlisi de variància del recobriment arbustiu en funció de l’orientació s’han trobat diferències significatives (p<0,05) en les unitats no tractades amb les dades procedents de l’inventari del 2000. A més, en tots els casos estudiats, en comparar les mitjanes obtingudes, el grup del les unitats amb orientació nord presenten un recobriment arbustiu promig més elevat que les del sud. Aquest resultat recolzarà la preferència d’aquesta espècie a la mitja ombra, tot i que tolera el sol si es troba amb humitat suficient.

En l’anàlisi de les variables biofísiques de l’arbrat en relació a la variació del recobriment arbustiu s’ha observat una relació positiva amb l’àrea basal i la biomassa foliar en estudiar les unitats no tractades de l’inventari del 2013. Aquest resultat difereix dels obtinguts per Krause, P.F., et al. (2003) que va determinar que l’altura dels arbres dominants i codominants eren els millors predictors en l’estimació de la densitat del sotabosc.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (Buxus sempervirens) al Parc del Castell de Montesquiu.

5.2. ESTUDI DE LA REBROTADA INDUÏDA DEL BOIX

Destacar que en l’anàlisi de les unitats tractades, tot i que no era significativa, la correlació entre el recobriment arbustiu i l’àrea basal va resultar negativa, a diferència del obtingut a les no tractades tant utilitzant les dades de l’inventari del 2000 com les del 2013. Aquest resultat pot estar influenciat per l’efecte de l’estassada, suggerint que en les unitats amb una major àrea basal la recuperació del sotabosc després del tractament és menor.

La regressió lineal múltiple multinivell va detectar com a variables explicatives de la variació en el vigor del rebrot l’orientació, el número de tanys no tallats, el número de tanys previs i el diàmetre del tany tallat.

Com s’ha detallat en els resultats per realitzar l’anàlisi es va crear un índex (PC1) que descriu el vigor del rebrot del boix, a partir de l’anàlisi de components principals format per tres variables dependents, l’altura dels rebrots, el número de rebrots més grans o iguals a 10 cm i el número de rebrots totals de cada tany tallat. Tot i que també es van prendre mesures del número de rebrots més petits de 10 cm, aquets no es van poder tenir en compte perquè no presentaven relació amb les variables independents.

Els resultats de l’orientació ens indiquen que el rebrot del boix és més vigorós a la solana que en l’obaga, aquest efecte pot estar relacionat amb la major disponibilitat de llum. Aquest resultat coincideix amb l’estudi realitzat en un bosc de pinassa amb boix del Solsonès, on es va observar que en les zones d’aclarida intensa els diàmetres i longituds dels rebrots del boix eren més elevats, degut probablement en una major incidència de llum (Tusell, J. M. et al., 2016). També l’estudi realitzat per Casals et al. (2016) ha observat que la recuperació del sotabosc, vuit o nou anys després d’una crema prescrita, és menor en boscos tancats. Aquests resultats coincideixen amb les correlacions detectades en el nostre estudi, entre la disminució del vigor del rebrot i
l’augment de variables indicadores de frondositat i densitat de l’estrat arborí (taula 4.15).

Per altre banda, la relació de l’augment del vigor del rebrot en augmentar el diàmetre del tany tallat coincideix amb els resultats obtinguts en les pinedes de pinassa amb boix del Solsonès, on després de dos anys d’aplicar una estassada arreu de la vegetació arbustiva, es va observar que el vigor del rebrot del boix està bàsicament relacionat amb la grandària dels individus previ el tractament (Tusell, J. M. et al., 2016).

En quan a la variació del vigor del rebrot en relació el número de tanys previs, s’observa que el vigor del rebrot augmenta a menor número de tanys d’una soca. Aquests resultats poden ser degut a la major competència per les reserves existents a les arrels a major nombre de tanys. Aquet fet també pot explicar els resultats obtinguts entre el número de tanys no tallats i el vigor del rebrot. El fet de deixar un tany en peu provoca que la resta de tanys tallats de la mateixa soca tinguin menys recursos disponibles per rebrotar, i per tant presenten una rebrotada menys vigorosa (menys rebrots i menor longitud).

Cal mencionar que malgrat que inicialment es va planificar el mostreig per obtenir dades en zones de diferent grau d’insolació (solana, obaga i fons de vall) amb l’objectiu de d’analitzar la variabilitat del rebrot en funció de l’exposició, la falta de mostres amb diferents tractaments silvícoles en les zones de solana no ho va fer possible. Finalment, es va optar per unir les dades de la solana i fons de vall atenent que les dues zones tenen orientació sud i analitzar l’efecte de l’orientació (nord-sud).

Aquets resultats confirmen que el comportament del boix és similar a altres arbres i arbustos estudiats (Savill, P.S. 2013), per tant es pot tractar com un bosc de rebrot aplicant selecció de tanys per regular la competència. L’actuació que es recomana es planteja a nivell de soca:

- Eliminació dels tanys de desenvolupament menor i deixar els peus de major vitalitat, diàmetre i alçada. Amb igualtat de condicions de qualitat entre tots els peus d’una soca, s’extrauran preferentment els de l’interior de la mateixa per afavorir la
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Conclusions

6. CONCLUSIONS
6. CONCLUSIONS

1) La digitalització i anàlisi de les dades dels inventaris dels PTGMF ha permès caracteritzar les Boixedes presents el Parc. Tot i obtenir alguns resultats significatius en quan a la variació del recobriment en funció de diversos factors, seria convenient realitzar un inventari específic per obtenir resultats més conclouents.

2) Aquest estudi a evidenciat la presència abundant d’aquesta espècie a la major part d’unitats del Parc indiferentment de les tipologies arbrades.

3) S’han detectat diferències del valor de recobriment arbustiu en funció de l’orientació; no obstant, aquests resultats només han estat significatius en un dels casos estudiats.

4) L’àrea basal i la biomassa foliar mostren una relació positiva amb el valor de recobriment arbustiu; no obstant, com el cas anterior, només han resultat significatius en uns dels casos estudiats.

5) En l’anàlisi de l’efecte dels tractaments silvícoles sobre el boix, s’han detectat com a variables explicatives del vigor del rebrot l’orientació, el número de tanys no tallats, el número de tanys previs i el diàmetre del tany tallat.

6) Per tant, el boix rebrota menys a l’obaga que a la solana, si és deixa un tany sense tallar i quan major és el número de tanys previs de la soca. Per altre banda, quant més gran és el diàmetre del tany tallat més rebrota el boix (més número de rebrots i més alts).

7) Amb els resultats obtinguts en l’estudi de la rebrotada induïda del boix s’ha determinat que la gestió més adequada del boix és realitzar una selecció de tanys deixant el peu de major diàmetre i eliminant els tanys menors.
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

7. BIBLIOGRAFIA
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Bibliografia

7. BIBLIOGRAFIA

Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Bibliografia

Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Bibliografia

Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Annex

9. ANNEX
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Fitxa de recollida de dades

1-Informació general

<table>
<thead>
<tr>
<th>Nº transsecte</th>
<th>UTM 31N X</th>
<th>Y</th>
</tr>
</thead>
</table>

Nom de la finca:
U.A:
Rumb transsecte:
GPS Iniè transsecte:
Final transsecte:

2- Topografia

<table>
<thead>
<tr>
<th>Altitud(m)</th>
<th>Pendent(%)</th>
<th>Orientació(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposició: solana</td>
<td>½</td>
<td>baga</td>
</tr>
</tbody>
</table>

3-Estrats de vegetació

<table>
<thead>
<tr>
<th>Estrat herbaç</th>
<th>Fcc(%)</th>
<th>Espècies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrat arbusc</td>
<td>Fcc(%)</td>
<td>Espècies</td>
</tr>
<tr>
<td>Estrat arbòri</td>
<td>Fcc(%)</td>
<td>Composició específica</td>
</tr>
<tr>
<td>Espècies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-Càlcul densitat boix (parcel·la circular R=10m)

<table>
<thead>
<tr>
<th>Coord. UTM</th>
<th>Nº peus boix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº fotografia</td>
<td></td>
</tr>
</tbody>
</table>

Composició específica

<table>
<thead>
<tr>
<th>Composició específica</th>
<th>Distribució espacial de la massa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Massa homogènia o pura</td>
<td>1 Uniforme</td>
</tr>
<tr>
<td>2 Massa heterogènia barrejada peu a peu</td>
<td>2 Disseminada en clapes aïllades</td>
</tr>
<tr>
<td>3 Massa heterogènia amb vol i subvol</td>
<td>3 Disseminada en individus aïllats</td>
</tr>
<tr>
<td>4 Massa heterogènia barrejada a clapes</td>
<td></td>
</tr>
</tbody>
</table>
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Inventari específic de lesmates de boix

| Codi transsecte: | |
| Mostra nº: | nº foto: |

Patró previ

nº tanys abans tractament				
nº tanys NO tallats:	Altura	Diàmetre		
Diàmetre tanys tallats	a	b	c	d

Estudi del regenerat

| Densitat del rebrot | alt | mig | baix |
| nº de rebrots <10 cm | a) | b) | c) | d) |

Altura (cm) dels rebrots > 10cm

<table>
<thead>
<tr>
<th>Tany</th>
<th>Diàmetre</th>
<th>Tany</th>
<th>Diàmetre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>37</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>38</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>39</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>28</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>29</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tany</th>
<th>Diàmetre</th>
<th>Tany</th>
<th>Diàmetre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>37</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>38</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>39</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>28</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>29</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Mapa de situació del Parc del Castell de Montesquiu amb les unitats d’actuació delimitades

Mapa de situació del Parc del Castell de Montesquiu

Llegenda
- Unitats d’actuació

UNIVERSITAT DE LLEIDA
Escola Tècnica Superior d’Enginyeria Agrària

Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu

Escala: 1:20.000

Mapa de situació

Plànol nº 1
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Annex

Mapa del tipus de vegetació amb les dades de l’inventari de l’any 2000

UNIVERSITAT DE LLEIDA

Escola Tècnica Superior d’Enginyeria Agrària

Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu

Escala: 1:20.000 Mapa de vegetació (inventari 2000) Plànol nº 2

73
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Mapa de Vegetació (Inventari 2013)

<table>
<thead>
<tr>
<th>Universitat de Lleida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escola Tècnica Superior d’Enginyeria Agrària</td>
</tr>
<tr>
<td>Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (Buxus sempervirens) al Parc del Castell de Montesquiu</td>
</tr>
<tr>
<td>Esca: 1:20.000</td>
</tr>
</tbody>
</table>
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Mapa d’orientació

UNIVERSITAT DE LLEIDA
Escola Tècnica Superior d’Enginyeria Agrària

Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu

Escala: 1:20.000 Mapa d’orientació Plànol nº 4
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Mapa de classes d’orientació, segons la classificació realitzada per *Altun et al.* (2008)
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Mapa d’orientació dels transsectes mostrejats

Annex
Caracterització de les boisedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Mapa del recobriment de boix segons les dades de l’inventari 2000
Mapa del recobriment arbustiu segons les dades de l’inventari del 2013

Fracció de cabuda coberta estrat arbustiu (%)

Llegenda

<table>
<thead>
<tr>
<th>Fcc_arbust</th>
<th>0,00% - 10,00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,01% - 30,00%</td>
<td></td>
</tr>
<tr>
<td>30,01% - 40,00%</td>
<td></td>
</tr>
<tr>
<td>40,01% - 65,00%</td>
<td></td>
</tr>
<tr>
<td>65,01% - 80,00%</td>
<td></td>
</tr>
</tbody>
</table>

Escala: 1:20.000 Mapa recobriment arbustiu (inventari 2013) Plànol nº 9

UNIVERSITAT DE LLEIDA
Escola Tècnica Superior d’Enginyeria Agrària
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Mapes de les variables biofísiques de l’arbrat (ICGC) amb els transsectes marcats

Fracció de cabuda coberta (%)

| Biomassa aèria total (t/ha) |

80
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Annex

<table>
<thead>
<tr>
<th>Biomassa foliar (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Àrea basal (m²/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Alçada mitjana (m)

![Alçada mitjana](image)

Diàmetre normal mitjà (cm)

![Diàmetre normal mitjà](image)
Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu.

Volum amb escorça (m³/ha)

UNIVERSITAT DE LLEIDA

Escola Tècnica Superior d’Enginyeria Agrària

Caracterització de les boixedes, anàlisi i estudi dels efectes de l’estassada sobre la rebrotada induïda del boix (*Buxus sempervirens*) al Parc del Castell de Montesquiu

Escala: 1:5.000 Mapes variables biofísiques de l’arbrat (ICGC) Plànol nº 10